Determine the net force on the “northern” hemisphere of a uniformly charged solid sphere of radius R and charge Q (the same as Prob. 2.47, only this time we’ll use the Maxwell stress tensor and Eq. 8.21).
Determine the net force on the “northern” hemisphere of a uniformly charged solid sphere of radius R and charge Q (the same as Prob. 2.47, only this time we’ll use the Maxwell stress tensor and Eq. 8.21).
F=\oint_{S}^{}{\overleftrightarrow{T}.da } (static). (8.21)
The boundary surface consists of two parts—a hemispherical “bowl” at radius R, and a circular disk at θ = π/2 (Fig. 8.4). For the bowl,
da = R^2 \sin θ dθ d\phi \hat{r}and
E=\frac{1}{4\pi\epsilon _0}\frac{Q}{R^2}\hat{r}.In Cartesian components,
\hat{r}=\sin\theta\cos\phi\hat{x}+\sin\theta\sin\phi\hat{y}+\cos\theta\hat{z},T_{zx}=\epsilon_0E_zE_x=\epsilon _0\left(\frac{Q}{4\pi\epsilon _0R^2} \right)^2 \sin\theta\cos\theta\cos\phi,\\T_{zy}=\epsilon_0E_zE_y=\epsilon _0\left(\frac{Q}{4\pi\epsilon _0R^2} \right)^2 \sin\theta\cos\theta\cos\phi,\\T_{zz}=\frac{\epsilon _0}{2}(E^2_z-E^2_x-E^2_y) =\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0R^2} \right)^2 (\cos^2\theta-\sin^2\theta). (8.22)
The net force is obviously in the z-direction, so it suffices to calculate
(\overleftrightarrow{T}.da)_z=T_{zx}da_x+T_{zy}da_y+T_{zz}da_z=\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0R} \right)^2\sin\theta\cos\theta d\theta d\phi.The force on the “bowl” is therefore
F_{bowl}=\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0R} \right)^2 2\pi \int_{0}^{\pi/2}{\sin\theta\cos\theta d \theta}=\frac{1}{4\pi\epsilon _0}\frac{Q^2}{8R^2}. (8.23)
Meanwhile, for the equatorial disk,
da=-rdrd\phi\hat{z}, (8.24)
and (since we are now inside the sphere)
E=\frac{1}{4\pi\epsilon _0}\frac{Q}{R^3}r= \frac{1}{4\pi\epsilon _0}\frac{Q}{R^3}r(\cos\phi\hat{x}+\sin\phi\hat{y}).Thus
T_{zz}=\frac{\epsilon _0}{2}(E^2_z-E^2_x-E^2_y) =-\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0R^3} \right)^2r^2,and hence
(\overleftrightarrow{T}.da )_z=\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0R^3} \right)^2r^3drd\phi.The force on the disk is therefore
F_{disk}=\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0R^3} \right)^2 2\pi \int_{0}^{R}{r^3dr}=\frac{1}{4\pi\epsilon _0}\frac{Q^2}{16R^2}. (5.25)
Combining Eqs. 8.23 and 8.25, I conclude that the net force on the northern hemisphere is
F=\frac{1}{4\pi\epsilon _0}\frac{3Q^2}{16R^2}. (8.26)
Incidentally, in applying Eq. 8.21, any volume that encloses all of the charge in question (and no other charge) will do the job. For example, in the present case we could use the whole region z > 0. In that case the boundary surface consists of the entire xy plane (plus a hemisphere at r =∞, but E = 0 out there, so it contributes nothing). In place of the “bowl,” we now have the outer portion of the plane (r > R). Here
T_{zz}=-\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0} \right)^2 \frac{1}{r^4}(Eq. 8.22 with θ = π/2 and R →r ), and da is given by Eq. 8.24, so
(\overleftrightarrow{T}.da )_z=\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0} \right)^2\frac{1}{r^3} drd\phi,and the contribution from the plane for r > R is
\frac{\epsilon _0}{2}\left(\frac{Q}{4\pi\epsilon _0} \right)^2 2\pi \int_{R}^{\infty }{\frac{1}{r^3} dr}=\frac{1}{4\pi\epsilon _0}\frac{Q^2}{8R^2},the same as for the bowl (Eq. 8.23).