Question 1.55: Check Stokes’ theorem using the function v = ay ˆx + bx ˆy (...

Check Stokes’ theorem using the function v=ay\hat{x}+bx\hat{y} (a and b are constants) and the circular path of radius R, centered at the origin in the xy plane. [Answer: π R^2(b − a)]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

∇\times v=\left | \begin{matrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ ay & bx & 0 \end{matrix} \right | = \hat{z} (b − a).   So  \int{} (∇\times v) · da = (b − a)\pi R^2 .

v · dl = (ay \hat{x} + bx \hat{y} ) · (dx \hat{x} + dy \hat{y} + dz \hat{z} ) = ay dx + bx dy; x^2 + y^2 = R^2 \Rightarrow 2xdx + 2y dy = 0,

so dy = −(x/y) dx.   So   v · dl = ay dx + bx(−x/y) dx =\frac{1}{y}\left(ay^2 − bx^2\right)dx .

For the “upper” semicircle, y =\sqrt{R^2-x^{2} },   so    v · dl =\frac{a\left(R^2−x^2\right) −bx^2}{\sqrt{R^2−x^2} }dx .

\int{}v · dl =\int\limits_{R}^{-R}{} \frac{aR^2 − (a + b)x^2}{\sqrt{R^2 − x^2} }dx =\left\{aR^2\sin ^{-1}\left(\frac{x}{R} \right)− (a + b)\left[-\frac{x}{2}\sqrt{R^2 − x^2} +\frac{R^2}{2}\sin ^{-1}\left(\frac{x}{R} \right) \right] \right\}| ^{+R}_{-R}

=\frac{1}{2}R^2(a − b)\sin ^{-1}(x/R)\mid ^{-R}_{+R}=\frac{1}{2}R^2(a − b)\left(\sin ^{-1}(−1) − \sin ^{-1}(+1) \right)=\frac{1}{2}R^2(a − b)\left(-\frac{\pi }{2}-\frac{\pi }{2} \right)

=\frac{1}{2}\pi R^2 (b − a).

And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) so

\oint{}v · dl = \pi R^2(b − a) .

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...