Question 1.56: Compute the line integral of v = 6 ˆx + yz^2 ˆy + (3y + z) ˆ...

Compute the line integral of

v = 6 \hat{x} + yz^2 \hat{y} + (3y + z)\hat{z}

along the triangular path shown in Fig. 1.49. Check your answer using Stokes’ theorem. [Answer: 8/3]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(1) x = z = 0;  dx = dz = 0;  y : 0 → 1. v · dl = (yz^2) dy = 0;  \int{}v · dl = 0 .

(2) x = 0;   z = 2−2y;   dz = −2 dy;   y : 1 → 0.   v·dl = (yz^2) dy+(3y+z) dz = y(2−2y)^2 dy−(3y+2−2y)2 dy;

\int{}v · dl = 2\int\limits_{1}^{0}{}(2y^3 − 4y^2 + y − 2) dy = 2 \left(\frac{y^4}{2}-\frac{4y^3}{3} +\frac{y^2}{2} -2y \right)\mid ^{0}_{1} =\frac{14}{3} .

(3) x = y = 0; dx = dy = 0; z : 2 → 0.   v · dl = (3y + z) dz = z dz;

\int{}v · dl =\int\limits_{2}^{0}{}z dz =\frac{z^2}{2} \mid ^{0}_{2}= −2 .

Total: \oint{}v · dl = 0+\frac{14}{3} −2 =\frac{8}{3} .

Meanwhile, Stokes’ thereom says \oint{}v · dl =\int{}(∇\times v) . da. Here da = dy dz \hat{x} , so all we need is

(∇\times v)_x =\frac{\partial}{\partial y}(3y + z) −\frac{\partial}{\partial z}(yz^2) = 3 − 2yz . Therefore

\int{}(∇\times v) · da =\iint{}(3 − 2yz) dy dz =\int_{0}^{1}{} \left[\int_{0}^{2-2y}{} (3 − 2yz) dz \right]dy

=\int_{0}^{1}{}\left[3(2 − 2y) − 2y\frac{1}{2}(2 − 2y)^2 \right]dy =\int_{0}^{1}{}(−4y^3 + 8y^2 − 10y + 6) dy

=\left(−y^4 +\frac{8}{3}y^3 − 5y^2 + 6y \right)\mid ^{1}_{0}= −1 +\frac{8}{3}− 5 + 6 =\frac{8}{3} .

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...