Question 1.57: Compute the line integral of v = (r cos^2 θ) ˆr − (r cos θ s...

Compute the line integral of

v=\left(r\cos ^2\theta \right) \hat{r}-\left(r\cos \theta \sin \theta \right)\hat{\pmb{\theta} }+3r\hat{\pmb{\phi} }

around the path shown in Fig. 1.50 (the points are labeled by their Cartesian coordinates). Do it either in cylindrical or in spherical coordinates. Check your answer, using Stokes’ theorem. [Answer: 3π/2]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Start at the origin

(1)  \theta =\frac{\pi }{2} ,  \phi= 0;   r : 0 \rightarrow 1.   v · dl =\left(r\cos ^2\theta \right)(dr) = 0.(dr) = 0.   \int{}v · dl = 0 .

(2)  r = 1,   \theta =\frac{\pi }{2};  \phi :0\rightarrow \pi /2.  v · dl = (3r)\left(r\sin \theta d\phi \right)=3d\phi .   \int{} v · dl = 3\int\limits_{0}^{\pi /2}{}d\phi =\frac{3\pi }{2} .

(3)  \phi =\frac{\pi }{2};  r\sin \theta = y = 1,   so   r =\frac{1}{\sin \theta },  dr =\frac{-1}{\sin ^2\theta } \cos \theta d\theta ,  \theta :  \frac{\pi }{2} \rightarrow \theta _0\equiv \tan ^{-1}\left(1/2\right) .

v · dl =\left(r\cos ^2\theta \right)(dr) −\left(r\cos \theta \sin \theta \right)\left(rd\theta \right)=\frac{\cos ^2\theta }{\sin \theta } \left(-\frac{\cos \theta }{\sin ^2\theta } \right)d\theta -\frac{\cos \theta \sin \theta }{\sin ^2\theta }d\theta

=-\left(\frac{\cos ^3\theta }{\sin ^3\theta }+\frac{\cos \theta }{\sin \theta } \right)d\theta =-\frac{\cos \theta }{\sin \theta }\left(\frac{\cos ^2\theta +\sin ^2\theta }{\sin ^2\theta } \right)d\theta =-\frac{\cos \theta }{\sin ^3\theta }d\theta .

Therefore

\int{} v · dl = −\int\limits_{\pi /2}^{\theta _0}{} \frac{\cos \theta }{\sin ^3\theta }d\theta =\frac{1}{2\sin ^2\theta }\mid ^{\theta _0}_{\pi /2}=\frac{1}{2\cdot \left(1/5\right) }-\frac{1}{2\cdot \left(1\right) }=\frac{5}{2}-\frac{1}{2}=2 .

(4)  \theta =\theta _0,  \phi =\frac{\pi }{2};  r  :\sqrt{5}\rightarrow 0.  v · dl =\left(r\cos ^2\theta \right)(dr) =\frac{4}{5}r  dr .

\int{}v · dl =\frac{4}{5} \int\limits_{\sqrt{5} }^{0}{} r dr =\frac{4}{5}\frac{r^2}{2} \mid ^{0 }_{\sqrt{5} } =-\frac{4}{5}\cdot \frac{5}{2}=-2 .

Total:

\oint{}v · dl = 0+\frac{3\pi }{2} +2-2=\frac{3\pi }{2} .

Stokes’ theorem says this should equal ∫(∇×v) · da

∇×v=\frac{1}{r\sin \theta }\left[\frac{\partial}{\partial\theta } \left(\sin \theta 3r\right) -\frac{\partial}{\partial \phi }\left(-r\sin \theta \cos \theta \right) \right]\hat{r} +\frac{1}{r} \left[\frac{1}{\sin \theta }\frac{\partial}{\partial \phi } \left(r\cos ^2\theta \right)-\frac{\partial}{\partial r} (r3r) \right]\hat{\pmb{\theta} }

+\frac{1}{r} \left[\frac{\partial}{\partial r} \left(-rr\cos \theta \sin \theta \right)-\frac{\partial}{\partial \theta }\left(r\cos ^2\theta \right) \right] \hat{\pmb{\phi} }

=\frac{1}{r\sin \theta } \left[3r\cos \theta \right] \hat{r} +\frac{1}{r} \left[-6r\right] \hat{\pmb{\theta} } +\frac{1}{r}\left[-2r\cos \theta \sin \theta +2r\cos \theta \sin \theta \right] \hat{\pmb{\phi} }

=3\cos \theta \hat{r} -6\hat{\pmb{\theta} } .

(1) Back face: da = −r  dr  d\theta  \hat{\pmb{\phi} } ;  (∇\times v) · da = 0.  \int{}\left(∇\times v\right) · da = 0 .

(2) Bottom: da = −r \sin \theta dr  d\phi \hat{\pmb{\theta} };  \left(∇\times v\right)· da = 6r\sin \theta   dr  d\phi . \theta =\frac{\pi }{2},  so  \left(∇\times v \right) · da = 6r  dr  d\phi

\int{} \left(∇\times v \right)· da =\int\limits_{0}^{1}{}6r dr\int\limits_{0}^{\pi /2}{}d\phi =6\cdot \frac{1}{2}\cdot \frac{\pi }{2}=\frac{3\pi }{2} .

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...