Question 1.59: Check the divergence theorem for the function v = r ^2 sin θ...

Check the divergence theorem for the function

v=r^2\sin \theta \hat{r}+4r^2\cos \theta \hat{\pmb{\theta} } +r^2\tan \theta \hat{\pmb{\phi} } ,

using the volume of the “ice-cream cone” shown in Fig. 1.52 (the top surface is spherical, with radius R and centered at the origin). [Answer: (\pi R^4/12)\left(2\pi +3\sqrt{3} \right) ]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

∇\cdot v=\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2r^2\sin \theta \right) +\frac{1}{r\sin \theta }\frac{\partial}{\partial \theta }\left(\sin \theta 4r^2\cos \theta \right)+\frac{1}{r\sin \theta }\frac{\partial}{\partial \phi }\left(r^2\tan \theta \right) .

=\frac{1}{r^2}4r^3\sin \theta +\frac{1}{r\sin \theta } 4r^2\left(\cos ^2\theta -\sin ^2\theta \right)=\frac{4r}{\sin \theta } \left(\sin ^2\theta +\cos ^2\theta -\sin ^2\theta \right)

=4r\frac{\cos ^2\theta }{\sin \theta } .

\int{}\left(∇\cdot v\right)d\tau =\int{}\left(4r\frac{\cos ^2\theta }{\sin \theta } \right)\left(r^2\sin \theta drd\theta d\phi \right)=\int\limits_{0}^{R}{}4r^3dr\int\limits_{0}^{\pi /6}{}\cos ^2\theta d\theta \int\limits_{0}^{2\pi }{d\phi }=\left(R^4\right)(2\pi )\left[\frac{\theta }{2}+\frac{\sin 2\theta }{4} \right] \mid ^{\pi /6}_{0}

=2\pi R^4\left(\frac{\pi }{12}+\frac{\sin 60°}{4} \right)=\frac{\pi R^4}{6}\left(\pi +3\frac{\sqrt{3} }{2} \right) =\frac{\pi R^4}{12} \left(2\pi +3\sqrt{3} \right) .

Surface coinsists of two parts:

(1) The ice cream: r = R;\phi :0\rightarrow 2\pi ;\theta :0\rightarrow \pi /6;da = R^2\sin \theta d\theta d\phi \hat{r} ;v·da =\left(R^2\sin \theta \right)\left(R^2\sin \theta d\theta d\phi \right)=R^4\sin ^2\theta d\theta d\phi .

\int{} v·da = R^4\int\limits_{0}^{\pi /6}{}\sin ^2\theta d\theta \int\limits_{0}^{2\pi }{}d\phi = \left(R^4\right) \left(2\pi \right)\left[\frac{1}{2}\theta -\frac{1}{4} \sin 2\theta \right]^{\pi /6}_{0}=2\pi R^4 \left(\frac{\pi }{12}-\frac{1}{4}\sin 60° \right)=\frac{\pi R^4}{6}\left(\pi -3\frac{\sqrt{3} }{2} \right)

(2) The cone: \theta =\frac{\pi }{6};\phi :0\rightarrow 2\pi ;r:0\rightarrow R;da=r\sin \theta d\phi dr\hat{\pmb{\theta} }=\frac{\sqrt{3} }{2}rdrd\phi \hat{\pmb{\theta} } ; v · da =\sqrt{3} r^3drd\phi

 

\int{} v · da =\sqrt{3}\int\limits_{0}^{R}{}r^3 dr \int\limits_{0}^{2\pi }{}d\phi =\sqrt{3}\cdot \frac{R^4}{4}\cdot 2\pi =\frac{\sqrt{3} }{2} \pi R^4 .

Therefore \int{}v · da =\frac{\pi R^4}{2} \left(\frac{\pi }{3}-\frac{\sqrt{3} }{2}+\sqrt{3} \right)=\frac{\pi R^4}{12} \left(2\pi +3\sqrt{3} \right) .

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...