Question 1.61: Although the gradient, divergence, and curl theorems are the...

Although the gradient, divergence, and curl theorems are the fundamental integral theorems of vector calculus, it is possible to derive a number of corollaries from them. Show that:

(a)  \int_{\nu }(∇T ) d\tau =\oint_{S}^{}{}T  da  .[Hint: Let v = cT, where c is a constant, in the divergence theorem; use the product rules.]

(b)  \int_{\nu }(∇ × v) d\tau =-\oint_{S}v\times da . [Hint: Replace v by (v × c) in the divergence theorem.]

(c)  \int_{\nu }^{}{} [T∇^2U + (∇T ) · (∇U)] d\tau =\oint_{S}(T∇U) · da. [Hint: Let v = T∇U in the divergence theorem.]

(d)  \int_{\nu }(T∇^2U − U∇^2T ) d\tau =\oint_{S}(T∇U − U∇T ) · da. [Comment: This is sometimes called Green’s second identity; it follows from (c), which is known as Green’s identity.]

(e)  \int_{S}^{}{}∇T × da = −\oint_{P}^{}{}T  dl . [Hint: Let v = cT in Stokes’ theorem.]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Divergence theorem: \oint{} v · da=\int{}\left(∇\cdot v\right)d\tau . Let v = cT, where c is a constant vector. Using product rule #5 in front cover: ∇·v = ∇·(cT) = T(∇·c)+c · (∇T). But c is constant so ∇·c = 0. Therefore we have: \int{c} \cdot \left(∇T\right)d\tau =\int{}Tc  · da . Since c is constant, take it outside the integrals: c · \int{}∇Td\tau =c\cdot \int{}T da. But c is any constant vector—in particular, it could be be \hat{x},  or  \hat{y},  or  \hat{z} —so each component of the integral on left equals corresponding component on the right, and hence

\int{} ∇Td\tau =\int{}T da.     qed

(b) Let v → (v × c) in divergence theorem. Then \int{} ∇\cdot(v \times c)d\tau =\int{}(v \times c)da . Product rule #6 ⇒ ∇\cdot (v \times c) = c ·(∇\times v) − v · (∇\times c) = c · (∇\times v). (Note: ∇\times c = 0, , since c is constant.) Meanwhile vector indentity (1) says da · (v × c) = c · (da × v) = −c · (v × da). Thus \int{c} \cdot \left(∇\times v\right)d\tau =-\int{c}\cdot(v \times da). Take c outside, and again let c be \hat{x},\hat{y},\hat{z}   then:

\int{} \left(∇\times v\right)d\tau =-\int{}v\times da    qed

(c) Let v = T∇U in divergence theorem: ∫∇·(T∇U) d\tau =∫T∇U ·da. Product rule #(5) ⇒ ∇. (T∇U) = T∇·(∇U) + (∇U) · (∇T) = T∇^2U + (∇U) · (∇T). Therefore

∫(T∇^2U + (∇U) · (∇T))d\tau =∫(T∇U) · da. qed

(d) Rewrite (c) with T ↔ U :∫(U∇^2T + (∇T) · (∇U))d\tau =∫(U∇T) ·da. Subtract this from (c), noting that the (∇U) · (∇T) terms cancel:

∫(T∇^2U − U∇^2T) d\tau =∫(T∇U − U∇T) . da. qed

(e) Stokes’ theorem: ∫(∇×v) · da =∮ v · dl. Let v = cT. By Product Rule #(7): ∇×(cT) = T(∇×c) −c × (∇T) = −c × (∇T) (since c is constant). Therefore, -∫(c × (∇T)) · da = ∮ Tc · dl. Use vector indentity #1 to rewrite the first term (c×(∇T)) · da = c · (∇T ×da). So −∫c · (∇T ×da) =∮c ·T dl. Pull c outside, and let c→ \hat{x} ,\hat{y},   and  \hat{z} to prove:

∫∇T × da = −∮T dl.     qed

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...