Question 1.63: (a) Find the divergence of the function v =ˆr/ rFirst comput...

(a)  Find the divergence of the function

v=\frac{\hat{r} }{r}

First compute it directly, as in Eq. 1.84. Test your result using the divergence theorem, as in Eq. 1.85. Is there a delta function at the origin, as there was for \hat{r}/r^2 ?What is the general formula for the divergence of r^n \hat{r} [Answer: ∇.\left(r^n \hat{r} \right) =(n + 2)r^{n -1} , unless n = −2, in which case it is 4\pi \delta ^3(r) ; for n < −2, the divergence is ill-defined at the origin.]

 

(b)  Find the curl of r^n \hat{r} . Test your conclusion using Prob. 1.61b. [Answer: ∇\times \left(r^n \hat{r} \right)=0 ]

 

∇\cdot v=\frac{1}{r^2} \frac{\partial}{\partial r}\left(r^2\frac{1}{r^2} \right) =\frac{1}{r^2} \frac{\partial}{\partial r} (1)=0               (1.84)

 

\oint{}v · da =\int{} \left(\frac{1}{R^2}\hat{r} \right)\cdot \left(R^2\sin \theta d\theta d\phi\hat{r} \right)=\left(\int_{0}^{\pi }{}\sin \theta d\theta \right) \left(\int_{0}^{2\pi }{}d\phi \right) =4\pi                        (1.85)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(1)  ∇\cdot v=\frac{1}{r^2}\frac{\partial}{\partial r} \left(r^2\cdot \frac{1}{r} \right)=\frac{1}{r^2}\frac{\partial}{\partial r} (r)=\frac{1}{r^2} .

For a sphere of radius R:

\left. \begin{matrix}\int{}v\cdot da=\int{}\left(\frac{1}{R}\hat{r} \right)\cdot \left(R^2\sin \theta d\theta d\phi \hat{r} \right) =R\int{\sin \theta d\theta d\phi =4\pi R} . \\ \int{}\left(∇\cdot v\right)d\tau =\int{}\left(\frac{1}{r^2} \right) \left(r^2\sin \theta drd\theta d\phi \right)=\left(\int\limits_{0}^{R}{}dr \right) \left(\int{}\sin \theta d\theta d\phi \right) =4\pi R . \end{matrix} \right\}
So   divergence  theorem   checks.

Evidently there is no delta function at the origin.

 

∇\times \left(r^n \hat{r} \right) =\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2r^\eta \right)=\frac{1}{r^2}\frac{\partial}{\partial r} (r^{n +2} ) = \frac{1}{r^2} (n + 2)r^{n -1} =(n + 2)r^{n -1}

(except for n = −2, for which we already know (Eq. 1.99) that the divergence is 4\pi \pmb{\delta} ^3(r)) .

∇\cdot \left(\frac{\hat{r} }{r^2} \right)=4\pi \delta ^3 (r).                                  (1.99)

(2) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives zero.
To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using Prob. 1.61(b): If ∇\times \left(r^n \hat{r} \right)=0 , then \int{}\left(∇\times v\right)d\tau =0\overset{?}{=}-\oint{}v \times da. But v = r^n \hat{r} and da =R^2\sin \theta d\theta d\phi \hat{r} are both in the \hat{r} directions, so v × da = 0.

Related Answered Questions

(d) ⇒ (a): ∇×F = ∇×(−∇U) = 0 (Eq. 1.44 – curl of g...