Question 9.2: The flow of water at room temperature (μ=1.0×10^-3 N s/m^2)b...

The flow of water at room temperature (μ=1.0×103  N  s/m2)(\mu =1.0\times 10^{-3}    N   s/m^{2}) between parallel plates need not be due to a pressure gradient; one can also generate a flow by moving the plates relative to each other while maintaining the gap distance at a constant value. Thus, consider the flow in Fig. 9.7, where the top plate is moving at a constant velocity U0=0.1131 m/sU_{0}=0.1131  m/s with no pressure gradient in the x direction. The fluid layer is 2 mm thick and the plate is 1 m wide. Use the Navier–Stokes equation for Newtonian flows to find (a) the velocity field, (b) the volumetric flow rate, and (c) the shear stress field.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given

U0=0.1131ms,    h=2mm,   w=1m,   dpdx=0Pam.U_{0}=0.1131\frac{m}{s},       h=2mm,      w=1m,      \frac{dp}{dx}=0\frac{Pa}{m}.

Assume
1. Newtonian fluid (μ=\mu =constant)
2. Incompressible flow (ν=0)(\triangledown \cdot \nu =0)

FIGURE 9.7 Couette flow induced by the relative motion of an upper plate, at constant velocity U0,U_{0}, relative to a fixed rigid plate at the bottom. The associated velocity profile in the fluid is linear and, consequently, the fluid shear stress is uniform.

3. Steady flow (ν/t=0)(\partial \nu /\partial t =0 )
4. Unidirectional flow (νy=νz=0)(\nu _{y}=\nu _{z}=0)
5. Negligible body forces (g=0)(g=0)
6. Fully developed flow (ν/x=0)(\partial \nu /\partial x =0 )
7. 1-D flow (νx/z=0, νx/x=0)(\partial \nu _{x}/\partial z =0,  \partial \nu _{x}/\partial x =0 )
8. No pressure gradient in x(p/x=0)x(\partial p/\partial x =0 )

Mass balance is given by Eq. (9.3); it is again satisfied identically because ν=νx(y)i^\nu =\nu _{x}(y)\hat{i}   only. The balance of linear momentum in Cartesian coordinates is given by Eqs. (9.4)–(9.6). Eliminate the terms that disappear given the above assumptions and show that we have

                      νxx+νyy+νzz=0,                                            \frac{\partial \nu _{x}}{\partial x}+\frac{\partial \nu _{y}}{\partial y}+\frac{\partial \nu _{z}}{\partial z}=0,            (9.3)

 

i^:px+μ(2νxx2+2νxy2+2νxz2)+ρgx\hat{i}:-\frac{\partial p}{\partial x}+\mu \left(\frac{\partial^{2}\nu_{x}}{\partial x^{2}}+\frac{\partial^{2}\nu_{x}}{\partial y^{2}}+\frac{\partial^{2}\nu_{x}}{\partial z^{2}} \right)+\rho g_{x}

 

        =ρ(νxt+νxνxx+νyνxy+νzνxz),                =\rho \left(\frac{\partial \nu _{x}}{\partial t}+\nu _{x}\frac{\partial \nu _{x}}{\partial x}+\nu _{y}\frac{\partial \nu _{x}}{\partial y}+\nu _{z}\frac{\partial \nu _{x}}{\partial z} \right),                            (9.4)

 

k^:pz+μ(2νzx2+2νzy2+2νzz2)+ρgz\hat{k}:-\frac{\partial p}{\partial z}+\mu \left(\frac{\partial^{2}\nu_{z}}{\partial x^{2}}+\frac{\partial^{2}\nu_{z}}{\partial y^{2}}+\frac{\partial^{2}\nu_{z}}{\partial z^{2}} \right)+\rho g_{z}

 

      =ρ(νzt+νxνzx+νyνzy+νzνzz).            =\rho \left(\frac{\partial \nu _{z}}{\partial t}+\nu _{x}\frac{\partial \nu _{z}}{\partial x}+\nu _{y}\frac{\partial \nu _{z}}{\partial y}+\nu _{z}\frac{\partial \nu _{z}}{\partial z} \right).          (9.6)

 

μ2νxy2=0,     py=0,    pz=0.\mu \frac{\partial ^{2}\nu _{x}}{\partial y^{2}}=0,         -\frac{\partial p}{\partial y}=0,        -\frac{\partial p}{\partial z}=0.

The second and third equations, together with assumption 8, reveal that p=constant. Hence, in the absence of a pressure-driven flow, the governing differential equation of motion is

                             μd2νxdy2=0.                                                          \mu \frac{d^{2}\nu _{x}}{dy^{2}}=0.

Integrating twice with respect to y, we obtain

                            μνx=c1y+c2.                                                        \mu \nu _{x}=c_{1}y+c_{2}.

Invoking the no-slip condition at the bottom plate, νx(y=0)=0,\nu_{x}(y=0)=0, and the no-slip condition at the top plate, νx(y=h)=U0,\nu_{x}(y=h)=U_{0}, we find that

                   0=c1(0)+c2c2=0,                                      0=c_{1}(0)+c_{2}\rightarrow c_{2}=0,

 

                 μU0=c1(h)+0c1=μU0h.                                  \mu U_{0}=c_{1}(h)+0\rightarrow c_{1}=\frac{\mu U_{0}}{h}.

Thus, the velocity profile is

                               νx(y)=U0hy,                                                              \nu _{x}(y)=\frac{U_{0}}{h}y,

which is called a Couette flow. The volumetric flow rate Q, with n=i^,n=\hat{i},  is thus given by

Some Exact Solutions

           Q=AνxdA=0h0wU0hy dz  dyQ=U0wh2.                      Q=\int_{A}^{}{\nu _{x}dA}=\int_{0}^{h}{}\int_{0}^{w}{\frac{U_{0}}{h} }y  dz   dy\rightarrow Q=\frac{U_{0}wh}{2}.

To calculate the shear stress, recall again that for Newtonian fluids,

                       σyx=2μ[12(νxy+νyx)],                                             \sigma _{yx}=2\mu \left[\frac{1}{2}\left(\frac{\partial \nu _{x}}{\partial y}+\frac{\partial \nu _{y}}{\partial x} \right) \right],

where, consistent with the assumptions, νy0.\nu_{y}\equiv 0. Hence,

                            σyx=μνxyσyx=μU0h,                                                        \sigma _{yx}=\mu \frac{\partial \nu _{x} }{\partial y}\rightarrow \sigma _{yx}=\mu \frac{U_{0}}{h},

or in terms of the volumetric flow rate Q,

                                    σyx=2μQwh2.                                                                       \sigma _{yx}=\frac{2\mu Q}{wh^{2}}.

In contrast to the pressure-driven flow wherein σyx\sigma _{yx} varied with position y and indeed went to zero at y=h/2,y=h/2, we see that σyx\sigma _{yx} is constant in this Couette flow. Moreover, because the computed value of σyx\sigma _{yx} is everywhere positive, each fluid element experiences a simple shear (cf. Fig. 7.7). The wall shear stress τw\tau _{w} is equal and opposite the fluid shear stress at y=0 and h. As we emphasize throughout, although the problem statement requires a specific computation, it is always better to first solve the problem generally. Now that we have the general relations, we can substitute the numerical values given in the problem statement into our equations for the volumetric flow rate and the shear stress. They are respectively

               Q=12(0.1131ms)(1 m)(0.002  m)=0.000113m3s=113mLs,                             Q=\frac{1}{2}\left(0.1131\frac{m}{s} \right)(1  m)(0.002   m)=0.000113\frac{m^{3}}{s}=113\frac{mL}{s},

 

τw=μU0h=(1.0×103Ns/m2)(0.1131m/s)0.002 m0.0566Nm2=0.0566Pa.\left|\tau _{w}\right|=\frac{\mu U_{0}}{h}=\frac{(1.0\times 10^{-3}N s/m^{2})(0.1131 m/s)}{0.002  m}\approx 0.0566\frac{N}{m^{2}}=0.0566Pa.

We will discover in Sect. 9.3.3 that this simple (general) solution has important implications in various real-world problems, including determination of the viscosity of a fluid.

2

Related Answered Questions