Question 10.3: For a steady incompressible flow of water through the reduci...

For a steady incompressible flow of water through the reducing elbow in Fig. 10.9, the entrance area A_{1} is 30 cm^{2} and the exit area A_{2} is \frac{1}{2}A_{1}. The mean velocity \overline{\nu }_{1} entering the elbow is 5 m/s with an inlet pressure of 5 Pa and outlet pressure equal to atmospheric. Find the total force required to hold the bend in place. Control Volume and Semi-empirical Methods FIGURE 10.9 Academic experiment to determine the support reactions due to a fluid flowing through an elbow. Shown, too, is a possible control volume that ignores possible effects of the fluid-induced shear stresses.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We are given the following:

                  A_{1}=30  cm^{2}=0.003  m^{2},

 

        A_{2}=\frac{1}{2}A_{1}=15  cm^{2}=0.0015  m^{2}

 

                     \overline{\nu }_{1}=5  m/s,

 

                   P_{1}=5Pa=5N/m^{2},

 

                      P_{2}=o(gauge),

 

             \rho _{H_{2}O}=1000  kg/m^{3}

We first need to solve for the velocity  \nu_{2}  leaving the elbow. From the mass balance equation for a steady, incompressible flow,

                                        0=\int_{A_{1}}^{}{\nu _{1}\cdot n_{1}dA}+\int_{A_{2}}^{}{\nu _{2}\cdot n_{2}dA},

where we have for CS_{1},\nu _{1}=\nu _{1}\left(\hat{i} \right)  and n_{1}=-\hat{i},  and for CS_{2},\nu _{2}=\nu _{2}\left(\hat{j} \right)  and n_{2}=\hat{j}. Hence, mass balance requires

                                       0=\int_{A_{1}}^{}{\nu _{1}}\left(\hat{i}\cdot -\hat{i} \right)dA+\int_{A_{2}}^{}{\nu _{2}}\left(\hat{j}\cdot \hat{j} \right)dA.

Using mean velocities, we have

                                        0=-\overline{\nu }_{1}\int_{A_{1}}^{}{dA}+\overline{\nu }_{2}\int_{A_{2}}^{}{dA}\rightarrow \overline{\nu }_{1}A_{1}=\overline{\nu }_{2}A_{2}

or, with A_{2}=A_{1}/2,

                                              \overline{\nu }_{1}A_{1}=\overline{\nu }_{2}\left(\frac{1}{2}A_{1} \right)\rightarrow \overline{\nu }_{2}=2\overline{\nu }_{1}.

From Newton’s third law we know that for every action, there is an equal and opposite reaction. To determine the total force required to hold the elbow in place, we need to use the balance of linear momentum equation for a steady, incompressible flow. Summing the forces for this CV, we obtain

           p_{1}A_{1}\left(\hat{i} \right)+p_{2}A_{2}\left(-\hat{j} \right)+R=\rho \int_{A_{1}}^{}{\nu _{1}\left(\hat{i} \right) }\left[\nu _{1}\left(\hat{i}\cdot -\hat{i} \right) \right]dA

 

                                                                                                  +\rho \int_{A_{2}}^{}{\nu _{2}\left(\hat{j} \right) }\left[\nu _{2}\left(\hat{j}\cdot \hat{j} \right) \right]dA,

where R is the reaction force, or with p_{2}=p_{atm}=0 (gauge), integration yields

                                                     p_{1}A_{1}\hat{i}+R=-\rho \overline{\nu }^{2}_{1}A_{1}\hat{i}+\rho \overline{\nu }^{2}_{2}A_{2}\hat{j}.

Collecting terms, we have

                                    R=-(p_{1}A_{1}+\rho \overline{\nu }^{2}_{1}A_{1} )\hat{i}+(\rho \overline{\nu }^{2}_{2}A_{2})\hat{j}.

By substituting the numerical values into this equation, we obtain

              R=-\left[\left(\frac{5N}{m^{2}} \right)(0.003  m^{2})+\left(\frac{1000  kg}{m^{3}} \right)(5m/s)^{2}(0.003  m^{2}) \right]\hat{i}

 

                         +\left[\left(\frac{1000  kg}{m^{3}} \right)(10  m/s)^{2}(0.0015  m^{2}) \right]\hat{j}=+(75 N)\hat{i}+(150 N)\hat{j}.

This force, which acts on the fluid is equal and opposite that exerted by the flow on the support. We could now solve the solid mechanics problem and Control Volume and Semi-empirical Methods determine the reactions at the base of the support and the stresses due to axial and bending loads.

Related Answered Questions

Experimentalists seek to design tests that are the...
Again, we must design an appropriate experiment. C...