Equilibrium
Consider a FBD of the rigid bar. Assume tension forces in members (1) and (2). A moment equation about pin C gives the best information for this situation:
\begin{aligned}\Sigma M_{C}=&(950 mm ) F_{1}+(600 mm ) F_{2} \\&-(720 mm )(36 kN )=0 (a)\end{aligned}
Geometry of Deformations Relationship
Draw a deformation diagram of the rigid bar. The deflections of the rigid bar are related by similar triangles:
\frac{v_{A}}{950 mm }=\frac{v_{B}}{600 mm }=\frac{v_{D}}{720 mm } (b)
Since there are no gaps or clearances at either pin A or pin B, the deformations of members (1) and (2) will equal the deflections of the rigid bar at A and B, respectively.
\frac{\delta_{1}}{950 mm }=\frac{\delta_{2}}{600 mm } (c)
Force-Temperature-Deformation Relationships
The relationship between the internal force, temperature change, and deformation of an axial member can be stated for members (1) and (2)
\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} (d)
Compatibility Equation
Substitute the force-deformation relationships (d) into the geometry of deformation relationship (c) to derive the compatibility equation:
\frac{1}{950 mm }\left[\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}\right]=\frac{1}{600 mm }\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right] (e)
Solve the Equations
Solve Eq. (e) for F_{1}:
F_{1}=\left\{\frac{950}{600}\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right]-\alpha_{1} \Delta T_{1} L_{1}\right\} \frac{A_{1} E_{1}}{L_{1}} (f)
and substitute this expression into Eq. (a):
(950 mm )\left\{\frac{950}{600}\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right]-\alpha_{1} \Delta T_{1} L_{1}\right\} \frac{A_{1} E_{1}}{L_{1}}+(600 mm ) F_{2}=(720 mm )(36 kN ) (g)
For this structure, the lengths, areas, elastic moduli, and coefficients of thermal expansion are listed below:
\begin{array}{ll}L_{1}=900 mm & L_{2}=900 mm \\A_{1}=400 mm ^{2} & A_{2}=400 mm ^{2} \\E_{1}=200,000 MPa & E_{2}=70,000 MPa \\\alpha_{1}=11.7 \times 10^{-6} /{ }^{\circ} C & \alpha_{2}=22.5 \times 10^{-6} / c\end{array}
Substitute these values along with \Delta T_{1}=\Delta T_{2}=+25^{\circ} C into Eq. (g) and calculate F_{2} = –3,989.18 N.
Backsubstitute into Eq. (f) to calculate F_{1} = 29,803.69 N.
(a) Normal stresses:
\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{29,803.69 N }{400 mm ^{2}}=74.5 MPa ( T ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-3,989.18 N }{400 mm ^{2}}=9.97 MPa ( C )\end{aligned}
(b) Deflections of the rigid bar
Calculate the deformation of member (1):
\begin{aligned}\delta_{1} &=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \\&=\frac{(29,803.69 N )(900 mm )}{\left(400 mm ^{2}\right)(200,000 MPa )}+\left(11.7 \times 10^{-6} /{ }^{\circ} C \right)\left(25^{\circ} C \right)(900 mm ) \\&=0.5985 mm\end{aligned}
Since the pin at A is assumed to have a perfect connection, v_{A}=\delta_{1}=0.5985 mm From Eq. (b),
v_{D}=\frac{720 mm }{950 mm } v_{A}=0.757895(0.5985 mm )=0.454 mm \downarrow