Question 5.63: The pin-connected structure shown in Figure P5.63 consists o...

The pin-connected structure shown in Figure P5.63 consists of a rigid bar ABCD and two axial members. Bar (1) is steel [E = 200 GPa, α = 11.7 × 10^{-6}/°C ] with a cross-sectional area of A_{1}=400  mm ^{2} . Bar (2) is an aluminum alloy [E = 70 GPa, α = 22.5 × 10^{-6}/°C] with a cross-sectional area of A_{2}=400  mm ^{2} . The bars are unstressed when the structure is assembled. After a concentrated load of P = 36 kN is applied and the temperature is increased by 25°C, determine:
(a) the normal stresses in bars (1) and (2).
(b) the deflection of point D on the rigid bar.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium
Consider a FBD of the rigid bar. Assume tension forces in members (1) and (2). A moment equation about pin C gives the best information for this situation:

\begin{aligned}\Sigma M_{C}=&(950  mm ) F_{1}+(600  mm ) F_{2} \\&-(720  mm )(36  kN )=0                              (a)\end{aligned}

Geometry of Deformations Relationship
Draw a deformation diagram of the rigid bar. The deflections of the rigid bar are related by similar triangles:

\frac{v_{A}}{950  mm }=\frac{v_{B}}{600  mm }=\frac{v_{D}}{720  mm }                                   (b)

Since there are no gaps or clearances at either pin A or pin B, the deformations of members (1) and (2) will equal the deflections of the rigid bar at A and B, respectively.

\frac{\delta_{1}}{950  mm }=\frac{\delta_{2}}{600  mm }                                        (c)

Force-Temperature-Deformation Relationships
The relationship between the internal force, temperature change, and deformation of an axial member can be stated for members (1) and (2)

\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}                                        (d)

Compatibility Equation
Substitute the force-deformation relationships (d) into the geometry of deformation relationship (c) to derive the compatibility equation:

\frac{1}{950  mm }\left[\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}\right]=\frac{1}{600  mm }\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right]                                   (e)

Solve the Equations
Solve Eq. (e) for F_{1}:

F_{1}=\left\{\frac{950}{600}\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right]-\alpha_{1} \Delta T_{1} L_{1}\right\} \frac{A_{1} E_{1}}{L_{1}}                              (f)

and substitute this expression into Eq. (a):

(950  mm )\left\{\frac{950}{600}\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right]-\alpha_{1} \Delta T_{1} L_{1}\right\} \frac{A_{1} E_{1}}{L_{1}}+(600  mm ) F_{2}=(720 mm )(36  kN )                                   (g)

For this structure, the lengths, areas, elastic moduli, and coefficients of thermal expansion are listed below:

\begin{array}{ll}L_{1}=900  mm & L_{2}=900  mm \\A_{1}=400  mm ^{2} & A_{2}=400  mm ^{2} \\E_{1}=200,000  MPa & E_{2}=70,000  MPa \\\alpha_{1}=11.7 \times 10^{-6} /{ }^{\circ} C & \alpha_{2}=22.5 \times 10^{-6} / c\end{array}

Substitute these values along with \Delta T_{1}=\Delta T_{2}=+25^{\circ} C into Eq. (g) and calculate F_{2} = –3,989.18 N.
Backsubstitute into Eq. (f) to calculate F_{1} = 29,803.69 N.

(a) Normal stresses: 

\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{29,803.69 N }{400  mm ^{2}}=74.5  MPa ( T ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-3,989.18 N }{400  mm ^{2}}=9.97  MPa ( C )\end{aligned}

(b) Deflections of the rigid bar
Calculate the deformation of member (1):

\begin{aligned}\delta_{1} &=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \\&=\frac{(29,803.69  N )(900  mm )}{\left(400  mm ^{2}\right)(200,000  MPa )}+\left(11.7 \times 10^{-6} /{ }^{\circ} C \right)\left(25^{\circ} C \right)(900  mm ) \\&=0.5985  mm\end{aligned}

Since the pin at A is assumed to have a perfect connection, v_{A}=\delta_{1}=0.5985  mm From Eq. (b),

v_{D}=\frac{720  mm }{950  mm } v_{A}=0.757895(0.5985  mm )=0.454  mm \downarrow

 

 

 

5.63'
5.63''

Related Answered Questions