Question 5.65: Rigid bar ABCD is loaded and supported as shown in Figure P5...

Rigid bar ABCD is loaded and supported as shown in Figure P5.65. Bar (1) is made of bronze [E = 100 GPa, α = 16.9 × 10610^{-6}/°C] and has a cross-sectional area of 400 mm2mm ^{2} . Bar (2) is made of aluminum [E = 70 GPa, α = 22.5 × 10610^{-6}/°C] and has a cross-sectional area of 600 mm2mm ^{2} . Bars (1) and (2) are initially unstressed. After the temperature has increased by 40°C, determine:
(a) the stresses in bars (1) and (2).
(b) the vertical deflection of point A.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium
Consider a FBD of the rigid bar. Assume tension forces in members (1) and (2). A moment equation about pin D gives the best information for this situation:

ΣMD=(3m)F1(1m)F2=0F2=3F1\Sigma M_{D}=(3 m ) F_{1}-(1 m ) F_{2}=0 \quad \therefore F_{2}=3 F_{1}                                  (a)

Geometry of Deformations Relationship
Draw a deformation diagram of the rigid bar. The deflections of the rigid bar are related by similar triangles:

vA4m=vB3m=vC1m\frac{v_{A}}{4 m }=\frac{v_{B}}{3 m }=\frac{v_{C}}{1 m }                                      (b)

There are no gaps, clearances, or other misfits at pins B and C; therefore, Eq. (b) can be rewritten in terms of the member deformations as:

δ13m=δ21mδ1=3δ2\frac{-\delta_{1}}{3 m }=\frac{\delta_{2}}{1 m } \quad \therefore \delta_{1}=-3 \delta_{2}                                            (c)

Note: To understand the negative sign associated with δ1\delta_{1}, see Section 5.5 for discussion of statically indeterminate rigid bar configurations with opposing members.

Force-Temperature-Deformation Relationships

δ1=F1L1A1E1+α1ΔT1L1δ2=F2L2A2E2+α2ΔT2L2\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}                                   (d)

Compatibility Equation

F1L1A1E1+α1ΔT1L1=3[F2L2A2E2+α2ΔT2L2]\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}=-3\left[\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}\right]                                     (e)

Solve the Equations
For this situation, ΔT1=ΔT2=ΔT=40C\Delta T_{1}=\Delta T_{2}=\Delta T=40^{\circ} C . Substitute Eq. (a) into Eq. (e):

F1L1A1E1+α1ΔTL1=3[(3F1)L2A2E2+α2ΔTL2]\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1}=-3\left[\frac{\left(3 F_{1}\right) L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2}\right]

and solve for F1F_{1}:

F1=ΔT(3α2L2+α1L1)L1A1E1+9L2A2E2=(40C)[3(22.5×106/C)(920 mm)+(16.9×106/C)(840 mm)]940 mm(400 mm2)(100,000 N/mm2)+9(920 mm)(600 mm2)(70,000 N/mm2)=13,990 N=13.990 kN\begin{aligned}F_{1} &=-\frac{\Delta T\left(3 \alpha_{2} L_{2}+\alpha_{1} L_{1}\right)}{\frac{L_{1}}{A_{1} E_{1}}+\frac{9 L_{2}}{A_{2} E_{2}}} \\&=-\frac{\left(40^{\circ} C \right)\left[3\left(22.5 \times 10^{-6} /{ }^{\circ} C \right)(920  mm )+\left(16.9 \times 10^{-6} /{ }^{\circ} C \right)(840  mm )\right]}{\frac{940  mm }{\left(400  mm ^{2}\right)\left(100,000  N / mm ^{2}\right)}+\frac{9(920  mm )}{\left(600  mm ^{2}\right)\left(70,000  N / mm ^{2}\right)}} \\&=-13,990  N =-13.990  kN\end{aligned}

Backsubstitute into Eq. (a) to find F2F_{2} = −41.970 kN.

(a) Normal Stresses
The normal stresses in each axial member can now be calculated:

σ1=F1A1=13,990 N400 mm2=35.0 MPa(C)σ2=F2A2=41,970 N600 mm2=70.0 MPa(C)\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{-13,990  N }{400  mm ^{2}}=35.0  MPa ( C ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-41,970  N }{600  mm ^{2}}=70.0  MPa ( C )\end{aligned}

(b) Deflection of the rigid bar at A
Calculate the deformation of one of the axial members, say member (1):

δ1=F1L1A1E1+α1ΔT1L1=(13,990 N)(840 mm)(400 mm2)(100,000 N/mm2)+(16.9×106/C)(40C)(840 mm)=0.27405 mm\begin{aligned}\delta_{1} &=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \\&=\frac{(-13,990  N )(840  mm )}{\left(400  mm ^{2}\right)\left(100,000  N / mm ^{2}\right)}+\left(16.9 \times 10^{-6} /{ }^{\circ} C \right)\left(40^{\circ} C \right)(840  mm ) \\&=0.27405  mm\end{aligned}

Since there are no gaps at pin B, the rigid bar deflection at B is equal to the deformation of member (1);
therefore, vB=δ1=0.27405mm (upward). v_{B}=\delta_{1}=0.27405 mm \text { (upward). } From similar triangles, the deflection of the rigid bar at A is related to vBv_{B} by:

vA4 m=vB3 m\frac{v_{A}}{4  m}=\frac{v_{B}}{3  m}

The deflection of the rigid bar at A is thus:

vA=4 m3 mvB=4 m3 m(0.27405 mm)=0.365 mmv_{A}=\frac{4  m }{3  m } v_{B}=\frac{4  m }{3  m }(0.27405  mm )=0.365  mm \uparrow

 

5.65'
5.65''

Related Answered Questions