Question 5.67: Three rods of different materials are connected and placed b...

Three rods of different materials are connected and placed between rigid supports at A and D, as shown in Figure P5.66/67. Properties for each of the three rods are given below. The bars are initially unstressed when the structure is assembled at 20°C. After the temperature has been increased to 100°C, determine:
(a) the normal stresses in the three rods.
(b) the force exerted on the rigid supports.
(c) the deflections of joints B and C relative to rigid support A.

\begin{array}{|l|l|l|l|}\hline \text { Aluminum (1) } & \text { Cast Iron (2) } & \text { Bronze (3) } \\L_{1}=440  mm & L_{2}=200  mm & L_{3}=320  mm \\A_{1}=1,200  mm ^{2} & A_{2}=2,800  mm ^{2} & A_{3}=800  mm ^{2} \\E_{1}=70 GPa & E_{2}=155  GPa & E_{3}=100  GPa \\\alpha_{1}=22.5 \times 10^{-6} /{ }^{\circ} C & \alpha_{2}=13.5 \times 10^{-6} /{ }^{\circ} C & \alpha_{3}=17.0 \times 10^{-6} /{ }^{\circ} C \\\hline\end{array}
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equilibrium
Consider a FBD at joint B. Assume that both internal axial forces will be tension.

\Sigma F_{x}=-F_{1}+F_{2}=0 \quad \therefore F_{1}=F_{2}                    (a)

Similarly, consider a FBD at joint C. Assume that both internal axial forces will be tension.

\Sigma F_{x}=-F_{2}+F_{3}=0 \quad \therefore F_{3}=F_{2}                           (b)

Geometry of Deformations Relationship

\delta_{1}+\delta_{2}+\delta_{3}=0                      (c)

Force-Temperature-Deformation Relationships

\delta_{1}=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \quad \delta_{2}=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} \quad \delta_{3}=\frac{F_{3} L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T_{3} L_{3}                                   (d)

Compatibility Equation

\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2}+\frac{F_{3} L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T_{3} L_{3}=0                             (e)

Solve the Equations
From Eq. (a), F_{1}=F_{2}, and from Eq. (b), F_{3}=F_{2}. The temperature change is the same for all members;
therefore, \Delta T_{1}=\Delta T_{2}=\Delta T_{3}=\Delta T. Eq. (e) then can be written as:

\frac{\left(F_{2}\right) L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T L_{1}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T L_{2}+\frac{\left(F_{2}\right) L_{3}}{A_{3} E_{3}}+\alpha_{3} \Delta T L_{3}=0

Solving for F_{2} :

\begin{gathered}\frac{F_{2} L_{1}}{A_{1} E_{1}}+\frac{F_{2} L_{2}}{A_{2} E_{2}}+\frac{F_{3} L_{3}}{A_{3} E_{3}}=-\alpha_{1} \Delta T L_{1}-\alpha_{2} \Delta T L_{2}-\alpha_{3} \Delta T L_{3} \\F_{2}\left[\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}+\frac{L_{3}}{A_{3} E_{3}}\right]=-\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}+\alpha_{3} L_{3}\right] \\F_{2}=-\frac{\Delta T\left[\alpha_{1} L_{1}+\alpha_{2} L_{2}+\alpha_{3} L_{3}\right]}{\frac{L_{1}}{A_{1} E_{1}}+\frac{L_{2}}{A_{2} E_{2}}+\frac{L_{3}}{A_{3} E_{3}}}             (f)\end{gathered}

Substitute the problem data along with ΔT = +80°C into Eq. (f) and calculate F_{1} = −148.80 kN. From Eq. (a), F_{1} = −148.80 kN and from Eq. (b), F_{3} = −148.80 kN.

(a) Normal Stresses
The normal stresses in each rod can now be calculated:

\begin{aligned}&\sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{-148,800  N }{1,200  mm ^{2}}=-124.00  MPa =124.0  MPa ( C ) \\&\sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{-148,800  N }{2,800  mm ^{2}}=-53.143  MPa =53.1  MPa ( C ) \\&\sigma_{3}=\frac{F_{3}}{A_{3}}=\frac{-148,800  N }{800  mm ^{2}}=-186.0  MPa =186.0  MPa ( C )\end{aligned}

(b) Force on Rigid Supports
The force exerted on the rigid supports is equal to the internal axial force:

R_{A}=R_{D}=148.8  kN

(c) Deflection of Joints B and C
The deflection of joint B is equal to the deformation (i.e., contraction in this instance) of rod (1). The deformation of rod (1) is given by:

\begin{aligned}\delta_{1} &=\frac{F_{1} L_{1}}{A_{1} E_{1}}+\alpha_{1} \Delta T_{1} L_{1} \\&=\frac{(-148,800  N )(440  mm )}{\left(1,200  mm ^{2}\right)\left(70,000  N / mm ^{2}\right)}+\left(22.5 \times 10^{-6} /{ }^{\circ} C \right)\left(80^{\circ} C \right)(440  mm )=0.01257  mm\end{aligned}

The deflection of joint B is thus:

u_{B}=\delta_{1}=0.01257  mm \rightarrow

The deformation of rod (2) is given by:

\begin{aligned}\delta_{2} &=\frac{F_{2} L_{2}}{A_{2} E_{2}}+\alpha_{2} \Delta T_{2} L_{2} \\&=\frac{(-148,800  N )(200  mm )}{\left(2,800  mm ^{2}\right)\left(155,000  N / mm ^{2}\right)}+\left(13.5 \times 10^{-6} /{ }^{\circ} C \right)\left(80^{\circ} C \right)(200  mm )=0.14743  mm\end{aligned}

The deflection of joint C is:

u_{C}=u_{B}+\delta_{2}=0.01257  mm +0.14743  mm =0.1600  mm \rightarrow

 

 

5.67'
5.67''

Related Answered Questions