Consider the gaussian distribution
ρ(x) = A e^{-λ(x-a)^2} ,
where A, a, and are positive real constants. (The necessary integrals are inside the back cover.) .
(a) Use Equation 1.16 to determine A.
(b) Find \left\langle x\right\rangle , \left\langle x^2\right\rangle , and σ.
(c) Sketch the graph of ρ(x).
\int_{0}^{h}{\frac{1}{2\sqrt{hx} } } dx=\frac{1}{2\sqrt{h} }\Bigl(2x^{1/2}\Bigr)\mid ^h_0=1 (1.16).