Question 1.3: Consider the gaussian distribution ρ(x) = A e^-λ(x-a)^2 , wh...

Consider the gaussian distribution

ρ(x) = A e^{-λ(x-a)^2} ,

where A, a, and are positive real constants. (The necessary integrals are inside the back cover.) .

(a) Use Equation 1.16 to determine A.

(b) Find \left\langle x\right\rangle , \left\langle x^2\right\rangle  , and σ.

(c) Sketch the graph of ρ(x).

\int_{0}^{h}{\frac{1}{2\sqrt{hx} } } dx=\frac{1}{2\sqrt{h} }\Bigl(2x^{1/2}\Bigr)\mid ^h_0=1        (1.16).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

1=\int_{-\infty }^{\infty }{Ae^{-\lambda (x-a)^2}} dx .    Let u ≡ x-a , du = dx , u : -\infty → \infty .

1=A\int_{-\infty }^{\infty } {e^{-λu^2}}du = A \sqrt{\frac{π}{λ} }   ⇒ A = \sqrt{\frac{λ}{π} } .

(b)

\left\langle x\right\rangle = \int_{-\infty }^{\infty } {x^{-λ(x-a)^2}}dx = A \int_{-\infty }^{\infty } {(u+a)e^{-λu^2}}du .

= A \biggl[ \int_{-\infty }^{\infty }{ue^{-λu^2}}du + a \int_{-\infty }^{\infty }{e^{-λu^2}}du\biggr] = A \biggl(0+a \sqrt{\frac{π}{λ} } \biggr) = a .

\left\langle x^2\right\rangle = A\int_{-\infty }^{\infty }{x^2 e^{-λ(x-a)^2}}dx .

= A \left\{\int_{-\infty }^{\infty }{u^2 e^{-λu^2}} du + 2a\int_{-\infty }^{\infty }{u e^{-λu^2}} du + a^2 \int_{-\infty }^{\infty }{ e^{-λu^2}} du\right\} .

= A \biggl[\frac{1}{2λ} \sqrt{\frac{π}{λ} } + 0 + a^2 \sqrt{\frac{π}{λ} } \biggr] = a^2 + \frac{1}{2λ} .

σ^2 = \left\langle x^2\right\rangle – \left\langle x\right\rangle^2  = a^2 + \frac{1}{2λ} – a^2 = \frac{1}{2λ} .

σ = \frac{1}{ \sqrt{2λ}} .

(c)

1

Related Answered Questions