Question 2.34: Find the energy stored in a uniformly charged solid sphere o...

Find the energy stored in a uniformly charged solid sphere of radius R and charge q. Do it three different ways:

(a) Use Eq. 2.43. You found the potential in Prob. 2.21.

W=\frac{1}{2} \int \rho V d \tau                           (2.43)

(b) Use Eq. 2.45. Don’t forget to integrate over all space.

W=\frac{\epsilon_{0}}{2} \int E^{2} d \tau  (all space).                       (2.45)

(c) Use Eq. 2.44. Take a spherical volume of radius a. What happens as a→∞?

W=\frac{\epsilon_{0}}{2}\left(\int\limits_{\nu }^{}{} E^{2} d \tau+\oint\limits_{S}^{}{} V E \cdot d a \right)                              (2.44)

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Step 1:
In part (a), we use the formula for work done in terms of charge density and volume: W = (1/2) ∫ ρV dτ We substitute the expression for V from problem 2.21 (or problem 2.28) into the equation and simplify to obtain the final result.
Step 2:
In part (b), we use the formula for work done in terms of electric field: W = (ε₀/2) ∫ E² dτ, We consider the cases of outside (r > R) and inside (r < R) the charge distribution separately. We substitute the expressions for the electric field in each region into the equation and integrate to obtain the final result.
Step 3:
In part (c), we use the formula for work done in terms of electric potential and electric field: W = (ε₀/2) ∫ V E · da + ∫ E² dτ, We consider a sphere of radius a that encloses all the charge. We calculate the surface integral over the sphere and the volume integral over the region inside the sphere. We substitute the expressions for V and E into the equation and integrate to obtain the final result.
The final result in all three cases is (1/4πε₀) (3/5) (q²/R), which represents the work done in assembling the charge distribution.

Final Answer

(a)  W=\frac{1}{2} \int \rho V d \tau. From Prob. 2.21 (or Prob. 2.28): V=\frac{\rho}{2 \epsilon_{0}}\left(R^{2}-\frac{r^{2}}{3}\right)=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{2 R}\left(3-\frac{r^{2}}{R^{2}}\right)

 

W=\frac{1}{2} \rho \frac{1}{4 \pi \epsilon_{0}} \frac{q}{2 R} \int_{0}^{R}\left(3-\frac{r^{2}}{R^{2}}\right) 4 \pi r^{2} d r=\left.\frac{q \rho}{4 \epsilon_{0} R}\left[3 \frac{r^{3}}{3}-\frac{1}{R^{2}} \frac{r^{5}}{5}\right]\right|_{0} ^{R}=\frac{q \rho}{4 \epsilon_{0} R}\left(R^{3}-\frac{R^{3}}{5}\right)

=\frac{q \rho}{5 \epsilon_{0}} R^{2}=\frac{q R^{2}}{5 \epsilon_{0}} \frac{q}{\frac{4}{3} \pi R^{3}}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{3}{5} \frac{q^{2}}{R}\right) .

(b)  W=\frac{\epsilon_{0}}{2} \int E^{2} d \tau. Outside (r > R) E =\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{ r } ; \text { Inside }(r<R) E =\frac{1}{4 \pi \epsilon_{0}} \frac{q}{R^{3}} r \hat{ r } .

\therefore W=\frac{\epsilon_{0}}{2} \frac{1}{\left(4 \pi \epsilon_{0}\right)^{2}} q^{2}\left\{\int_{R}^{\infty} \frac{1}{r^{4}}\left(r^{2} 4 \pi d r\right)+\int_{0}^{R}\left(\frac{r}{R^{3}}\right)^{2}\left(4 \pi r^{2} d r\right)\right\}

=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2}\left\{\left.\left(-\frac{1}{r}\right)\right|_{R} ^{\infty}+\left.\frac{1}{R^{6}}\left(\frac{r^{5}}{5}\right)\right|_{0} ^{R}\right\}=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2}\left(\frac{1}{R}+\frac{1}{5 R}\right)=\frac{1}{4 \pi \epsilon_{0}} \frac{3}{5} \frac{q^{2}}{R} .

(c)  W=\frac{\epsilon_{0}}{2}\left\{\oint_{ S } V E \cdot d a +\int_{ \nu } E^{2} d \tau\right\} , where ν is large enough to enclose all the charge, but otherwise arbitrary. Let’s use a sphere of radius a > R. Here V=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r} .

W=\frac{\epsilon_{0}}{2}\left\{\int_{r=a}\left(\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r}\right)\left(\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}\right) r^{2} \sin \theta d \theta d \phi+\int_{0}^{R} E^{2} d \tau+\int_{R}^{a}\left(\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}\right)^{2}\left(4 \pi r^{2} d r\right)\right\}

=\frac{\epsilon_{0}}{2}\left\{\frac{q^{2}}{\left(4 \pi \epsilon_{0}\right)^{2}} \frac{1}{a} 4 \pi+\frac{q^{2}}{\left(4 \pi \epsilon_{0}\right)^{2}} \frac{4 \pi}{5 R}+\left.\frac{1}{\left(4 \pi \epsilon_{0}\right)^{2}} 4 \pi q^{2}\left(-\frac{1}{r}\right)\right|_{R} ^{a}\right\}

=\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2}\left\{\frac{1}{a}+\frac{1}{5 R}-\frac{1}{a}+\frac{1}{R}\right\}=\frac{1}{4 \pi \epsilon_{0}} \frac{3}{5} \frac{q^{2}}{R} .

As a → 1, the contribution from the surface integral \left(\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2 a}\right) goes to zero, while the volume integral \left(\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{2 a}\left(\frac{6 a}{5 R}-1\right)\right) picks up the slack.

Related Answered Questions