Calculate d(p)/dt . Answer.
dtd⟨p⟩=⟨−∂x∂V⟩.
This is an instance of Ehrenfest’s theorem, which asserts that expectation values obey the classical laws.
Calculate d(p)/dt . Answer.
dtd⟨p⟩=⟨−∂x∂V⟩.
This is an instance of Ehrenfest’s theorem, which asserts that expectation values obey the classical laws.
From Eq. 1.33,
⟨p⟩=mdtd⟨x⟩=iℏ∫(Ψ∗∂x∂Ψ)dx. (1.33).
dtd⟨p⟩=–iℏ∫∂t∂ (Ψ∗∂x∂Ψ)dx.
But, noting that ∂x∂t∂2Ψ=∂t∂x∂2Ψ.
and using Eqs. 1.23-1.24:
∂t∂ Ψ=2miℏ∂x2∂2Ψ–ℏiVΨ. (1.23).
∂t∂ Ψ∗=−2miℏ∂x2∂2Ψ∗+ℏiVΨ∗. (1.24).
∂t∂ (Ψ∗∂x∂Ψ) =∂t∂ Ψ∗∂x∂ Ψ+Ψ∗∂x∂ (∂t∂Ψ) =[−2miℏ∂x2∂2Ψ∗ +ℏiVΨ∗]∂x∂Ψ+Ψ∗∂x∂[2miℏ∂x2∂2Ψ∗–ℏiVΨ]=2miℏ[Ψ∗∂x3∂3Ψ–∂x2∂2Ψ∗∂x∂ Ψ]+ℏi[VΨ∗∂x∂ Ψ–Ψ∗∂x∂ (VΨ)].
The first term integrates to zero, using integration by parts twice, and the second term can be simplified to VΨ∗∂x∂ Ψ–Ψ∗V∂x∂ Ψ–Ψ∗∂x∂ VΨ=–∣Ψ∣2∂x∂ V .
So
dtd⟨p⟩=–iℏ(ℏi) ∫–∣Ψ∣2∂x∂ Vdx=⟨–∂x∂V⟩ . QED