Question 1.7: Calculate d(p)/dt . Answer. d(p)/dt = (-∂V/∂x) . (1.38) This...

Calculate d(p)/dt . Answer.

dpdt=Vx \frac{d\left\langle p\right\rangle }{dt} = \left\langle -\frac{\partial V}{\partial x} \right\rangle .

This is an instance of Ehrenfest’s theorem, which asserts that expectation values obey the classical laws.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From Eq. 1.33,

p=mdxdt=i(ΨΨx)dx \left\langle p\right\rangle = m \frac{d \left\langle x\right\rangle }{dt} = i\hbar \int{\Bigl(\Psi ^*\frac{\partial \Psi }{\partial x} \Bigr) } dx .    (1.33).

dpdt=i t(ΨΨx)dx \frac{d\left\langle p\right\rangle }{dt} = – i\hbar \int{\frac{\partial  }{\partial t} \bigl(\Psi ^*\frac{\partial \Psi }{\partial x}\bigr) }dx .

But, noting that 2Ψxt=2Ψtx \frac{\partial ^2 Ψ}{\partial x \partial t} = \frac{\partial ^2 Ψ}{\partial t \partial x} .

and using Eqs. 1.23-1.24:

 Ψt=i2m2Ψx2iVΨ \frac{\partial  Ψ}{ \partial t} = \frac{i\hbar}{2m} \frac{\partial ^2 Ψ}{\partial x ^2} – \frac{i}{\hbar}V Ψ .        (1.23).

 Ψt=i2m2Ψx2+iVΨ \frac{\partial  Ψ^*}{ \partial t} = -\frac{i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2} + \frac{i}{\hbar}V Ψ^* .    (1.24).

 t(ΨΨx) = Ψt Ψx+Ψ x(Ψt) =[i2m2Ψx2 +iVΨ]Ψx+Ψx[i2m2Ψx2iVΨ] \frac{\partial  }{\partial t} \Bigl(\Psi ^*\frac{\partial \Psi }{\partial x} \Bigr)  = \frac{\partial  Ψ^*}{ \partial t} \frac{\partial  Ψ}{ \partial x} + Ψ^* \frac{\partial  }{\partial x} \Bigl(\frac{\partial \Psi }{\partial t} \Bigr)  = \biggl[-\frac{ i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2}  + \frac{ i}{\hbar} V Ψ^*\biggr] \frac{\partial \Psi }{\partial x} + Ψ^* \frac{\partial }{\partial x }\biggl[ \frac{ i\hbar}{2m} \frac{\partial ^2 Ψ^*}{\partial x ^2} – \frac{ i}{\hbar} V Ψ \biggr]

=i2m[Ψ3Ψx32Ψx2 Ψx]+i[VΨ ΨxΨ x(VΨ)] = \frac{ i\hbar}{2m} \biggl[ Ψ^* \frac{\partial ^3 Ψ}{\partial x ^3} – \frac{\partial ^2 Ψ^*}{\partial x ^2} \frac{\partial  Ψ}{\partial x } \biggr] + \frac{ i}{\hbar}\biggl[ V Ψ^* \frac{\partial  Ψ}{\partial x} – Ψ^* \frac{\partial  }{\partial x } (V Ψ)\biggr] .

The first term integrates to zero, using integration by parts twice, and the second term can be simplified to VΨ ΨxΨV ΨxΨ VxΨ=Ψ2 Vx V Ψ^* \frac{\partial  Ψ}{\partial x} – Ψ^* V \frac{\partial  Ψ}{\partial x} – Ψ^* \frac{\partial  V}{\partial x} Ψ = – \left|\Psi \right|^2 \frac{\partial  V}{\partial x} .

So

dpdt=i(i) Ψ2 Vxdx=Vx \frac{d\left\langle p\right\rangle }{dt} = – i\hbar \biggl(\frac{ i}{\hbar}\biggr)  \int { – \left|\Psi \right|^2 \frac{\partial  V}{\partial x}}dx = \left\langle – \frac{\partial V}{\partial x} \right\rangle .    QED

Related Answered Questions