Question 2.50: The electric potential of some configuration is given by the...

The electric potential of some configuration is given by the expression

V( r )=A \frac{e^{-\lambda r}}{r} ,

where A and λ are constants. Find the electric field E(r), the charge density ρ(r ), and the total charge Q. \left[\text { Answer: } \rho=\epsilon_{0} A\left(4 \pi \delta^{3}( r )-\lambda^{2} e^{-\lambda r} / r\right)\right]

Question Data is a breakdown of the data given in the question above.
  • Electric potential: V(r) = A * (e^(-λr)) / r
  • Constants: A, λ
  • Desired quantities:
    • Electric field: E(r)
    • Charge density: ρ(r)
    • Total charge: Q
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Step 1:
The expression starts with the equation E = -∇V, which represents the electric field (E) as the negative gradient of the electric potential (V).
Step 2:
The electric potential is given as V = -A(e^(-λr))/r, where A and λ are constants.
Step 3:
Taking the gradient of V, we compute ∇V, which involves differentiating the potential with respect to the position vector r.
Step 4:
After evaluating the gradient, we simplify the expression to obtain E = A(e^(-λr))(1+λr) (r^(-2)) r-hat, where r-hat is the unit vector in the direction of r.
Step 5:
Next, we calculate the charge density (ρ) using the equation ρ = ε₀∇·E, where ε₀ is the vacuum permittivity.
Step 6:
Using the divergence theorem, we can rewrite the expression as ρ = ε₀A(e^(-λr))(1+λr) * ∇·(r^(-2)r-hat) + ε₀A(r^(-2)r-hat) · ∇(e^(-λr))(1+λr).
Step 7:
By applying the divergence of (r^(-2)r-hat), we find that ∇·(r^(-2)r-hat) = 4πδ³(r), where δ³(r) is the three-dimensional Dirac delta function.
Step 8:
Additionally, we use the property e^(-λr)δ³(r) = δ³(r), which simplifies the expression further.
Step 9:
We then simplify the term ∇(e^(-λr))(1+λr) to obtain ∇(e^(-λr))(1+λr) = -λ²re^(-λr)r-hat.
Step 10:
Finally, combining all the simplified expressions, we arrive at ρ = ε₀A[4πδ³(r) - (λ²/r)e^(-λr)].
Step 11:
To calculate the total charge (Q), we integrate the charge density over the entire volume using the equation Q = ∫ρdτ.
Step 12:
By integrating the expression, we find that Q = ε₀A[4π - λ²4π∫(re^(-λr))dr].
Step 13:
Evaluating the integral, we obtain ∫(re^(-λr))dr = 1/λ².
Step 14:
Substituting the integral result back into the expression, we find Q = 4πε₀A(1 - λ²/λ²).
Step 15:
Simplifying further, we get Q = 4πε₀A(1 - 1) = 0.
Therefore, the final answer for the total charge (Q) is zero.

Final Answer

E =- \nabla V=-A \frac{\partial}{\partial r}\left(\frac{e^{-\lambda r}}{r}\right) \hat{ r }=-A\left\{\frac{r(-\lambda) e^{-\lambda r}-e^{-\lambda r}}{r^{2}}\right\} \hat{ r }=A e^{-\lambda r}(1+\lambda r) \frac{\hat{ r }}{r^{2}} .

\rho=\epsilon_{0} \nabla \cdot E =\epsilon_{0} A\left\{e^{-\lambda r}(1+\lambda r) \nabla \cdot\left(\frac{\hat{r}}{r^{2}}\right)+\frac{\hat{r}}{r^{2}} \cdot \nabla\left(e^{-\lambda r}(1+\lambda r)\right)\right\} . \quad \text { But } \nabla \cdot\left(\frac{\hat{r}}{r^{2}}\right)=4 \pi \delta^{3}( r ) (Eq. 1.99), and e^{-\lambda r}(1+\lambda r) \delta^{3}( r )=\delta^{3}( r ) (Eq. 1.88). Meanwhile,

f(x) \delta(x)=f(0) \delta(x)                        (1.88)

\nabla \left(e^{-\lambda r}(1+\lambda r)\right)=\hat{ r } \frac{\partial}{\partial r}\left(e^{-\lambda r}(1+\lambda r)\right)=\hat{ r }\left\{-\lambda e^{-\lambda r}(1+\lambda r)+e^{-\lambda r} \lambda\right\}=\hat{ r }\left(-\lambda^{2} r e^{-\lambda r}\right) .

\text { So } \frac{\hat{ r }}{r^{2}} \cdot \nabla\left(e^{-\lambda r}(1+\lambda r)\right)=-\frac{\lambda^{2}}{r} e^{-\lambda r} , and \rho=\epsilon_{0} A\left[4 \pi \delta^{3}( r )-\frac{\lambda^{2}}{r} e^{-\lambda r}\right]

Q=\int \rho d \tau=\epsilon_{0} A\left\{4 \pi \int \delta^{3}( r ) d \tau-\lambda^{2} \int \frac{e^{-\lambda r}}{r} 4 \pi r^{2} d r\right\}=\epsilon_{0} A\left(4 \pi-\lambda^{2} 4 \pi \int_{0}^{\infty} r e^{-\lambda r} d r\right) .

\text { But } \int_{0}^{\infty} r e^{-\lambda r} d r=\frac{1}{\lambda^{2}}, \text { so } Q=4 \pi \epsilon_{0} A\left(1-\frac{\lambda^{2}}{\lambda^{2}}\right)=\text { zero. }

Related Answered Questions