Question 2.54: Imagine that new and extraordinarily precise measurements ha...

Imagine that new and extraordinarily precise measurements have revealed an error in Coulomb’s law. The actual force of interaction between two point charges is found to be

F =\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{ᴫ^{2}}\left(1+\frac{ᴫ}{\lambda}\right) e^{-(ᴫ/ \lambda)}\hat{ᴫ} ,

where λ is a new constant of nature (it has dimensions of length, obviously, and is a huge number—say half the radius of the known universe—so that the correction is small, which is why no one ever noticed the discrepancy before). You are charged with the task of reformulating electrostatics to accommodate the new discovery. Assume the principle of superposition still holds.

(a) What is the electric field of a charge distribution ρ (replacing Eq. 2.8)?

E ( r )=\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho\left( r ^{\prime}\right)}{ᴫ^{2}} ᴫ d \tau^{\prime}                                     (2.8)

(b) Does this electric field admit a scalar potential? Explain briefly how you reached your conclusion. (No formal proof necessary—just a persuasive argument.)

(c) Find the potential of a point charge q—the analog to Eq. 2.26. (If your answer to (b) was “no,” better go back and change it!) Use∞as your reference point.

V( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{ᴫ}                 (2.26)

(d) For a point charge q at the origin, show that

\oint_{ S } E \cdot d a +\frac{1}{\lambda^{2}} \int_{\nu } V d \tau=\frac{1}{\epsilon_{0}} q ,

where S is the surface, \nu the volume, of any sphere centered at q.

(e) Show that this result generalizes:

\oint_{ S } E \cdot d a +\frac{1}{\lambda^{2}} \int_{\nu } V d \tau=\frac{1}{\epsilon_{0}} Q_{ enc }.

for any charge distribution. (This is the next best thing to Gauss’s Law, in the new “electrostatics.”)

(f) Draw the triangle diagram (like Fig. 2.35) for this world, putting in all the appropriate formulas. (Think of Poisson’s equation as the formula for ρ in terms of V, and Gauss’s law (differential form) as an equation for ρ in terms of E.)

(g) Show that some of the charge on a conductor distributes itself (uniformly!) over the volume, with the remainder on the surface. [Hint: E is still zero, inside a conductor.]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  E =\frac{1}{4 \pi \epsilon_{0}} \int \frac{\rho \hat{ᴫ}}{ᴫ^{2}}\left(1+\frac{ᴫ}{\lambda}\right) e^{-ᴫ / \lambda} d \tau.

(b)  Yes. The field of a point charge at the origin is radial and symmetric, so ∇×E = 0, and hence this is also true (by superposition) for any collection of charges.

(c)  V=-\int_{\infty}^{r} E \cdot d l =-\frac{1}{4 \pi \epsilon_{0}} q \int_{\infty}^{r} \frac{1}{r^{2}}\left(1+\frac{r}{\lambda}\right) e^{-r / \lambda} d r

 

=\frac{1}{4 \pi \epsilon_{0}} q \int_{r}^{\infty} \frac{1}{r^{2}}\left(1+\frac{r}{\lambda}\right) e^{-r / \lambda} d r=\frac{q}{4 \pi \epsilon_{0}}\left\{\int_{r}^{\infty} \frac{1}{r^{2}} e^{-r / \lambda} d r+\frac{1}{\lambda} \int_{r}^{\infty} \frac{1}{r} e^{-r / \lambda} d r\right\} .

Now \int \frac{1}{r^{2}} e^{-r / \lambda} d r=-\frac{e^{-r / \lambda}}{r}-\frac{1}{\lambda} \int \frac{e^{-r / \lambda}}{r} d r \longleftarrow exactly right to kill the last term. Therefore

V(r)=\frac{q}{4 \pi \epsilon_{0}}\left\{-\left.\frac{e^{-r / \lambda}}{r}\right|_{r} ^{\infty}\right\}=\frac{q}{4 \pi \epsilon_{0}} \frac{e^{-r / \lambda}}{r} .

(d)  \oint_{ S } E \cdot d a =\frac{1}{4\pi \varepsilon _0}q\frac{1}{R^2} \left(1+\frac{R}{\lambda}\right) e^{-R / \lambda}4\pi R^2=\frac{q}{\epsilon_{0}}\left(1+\frac{R}{\lambda}\right) e^{-R / \lambda} .

\int_{ \nu } V d \tau=\frac{q}{4\pi \varepsilon _0} \int_{0}^{R} \frac{e^{-r / \lambda}}{r} r^{2}4\pi d r=\frac{q}{\epsilon_{0}} \int_{0}^{R} r e^{-r / \lambda} d r=\frac{q}{\epsilon_{0}}\left[\frac{e^{-r / \lambda}}{(1 / \lambda)^{2}}\left(-\frac{r}{\lambda}-1\right)\right]_{0}^{R} .

=\lambda^{2} \frac{q}{\epsilon_{0}}\left\{-e^{-R / \lambda}\left(1+\frac{R}{\lambda}\right)+1\right\} .

\therefore \oint_{ S } E \cdot d a +\frac{1}{\lambda^{2}} \int_{ \nu } V d \tau=\frac{q}{\epsilon_{0}}\left\{\left(1+\frac{R}{\lambda}\right) e^{-R / \lambda}-\left(1+\frac{R}{\lambda}\right) e^{-R / \lambda}+1\right\}=\frac{q}{\epsilon_{0}} .   qed

(e)  Does the result in (d) hold for a nonspherical surface? Suppose we
make a “dent” in the sphere—pushing a patch \left(\text { area } R^{2} \sin \theta d \theta d \phi\right) from radius R out to radius S \left(\operatorname{area} S^{2} \sin \theta d \theta d \phi\right) .

\Delta \oint E \cdot d a =\frac{q}{4 \pi \epsilon_{0}}\left\{\frac{1}{S^{2}}\left(1+\frac{S}{\lambda}\right) e^{-S / \lambda}\left(S^{2} \sin \theta d \theta d \phi\right)-\frac{1}{R^{2}}\left(1+\frac{R}{\lambda}\right) e^{-R / \lambda}\left(R^{2} \sin \theta d \theta d \phi\right)\right\}

 

=\frac{q}{4 \pi \epsilon_{0}}\left[\left(1+\frac{S}{\lambda}\right) e^{-S / \lambda}-\left(1+\frac{R}{\lambda}\right) e^{-R / \lambda}\right] \sin \theta d \theta d \phi .

\Delta \frac{1}{\lambda^{2}} \int V d \tau=\frac{1}{\lambda^{2}} \frac{q}{4 \pi \epsilon_{0}} \int \frac{e^{-r / \lambda}}{r} r^{2} \sin \theta d r d \theta d \phi=\frac{1}{\lambda^{2}} \frac{q}{4 \pi \epsilon_{0}} \sin \theta d \theta d \phi \int_{R}^{S} r e^{-r / \lambda} d r

 

=-\left.\frac{q}{4 \pi \epsilon_{0}} \sin \theta d \theta d \phi\left(e^{-r / \lambda}\left(1+\frac{r}{\lambda}\right)\right)\right|_{R} ^{S}

 

=-\frac{q}{4 \pi \epsilon_{0}}\left[\left(1+\frac{S}{\lambda}\right) e^{-S / \lambda}-\left(1+\frac{R}{\lambda}\right) e^{-R / \lambda}\right] \sin \theta d \theta d \phi .

So the change in \frac{1}{\lambda^{2}} \int V d \tau exactly compensates for the change in \oint E \cdot d a , and we get \frac{1}{\epsilon_{0}} q for the total using the dented sphere, just as we did with the perfect sphere. Alny closed surface can be built up by successive distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside, the total is \frac{1}{\epsilon_{0}} Q_{\text {enc }} . Charges outside do not contribute (in the argument above we found that for this volume \oint E \cdot d a +\frac{1}{\lambda^{2}} \int V d \tau=0 __ and, again, the sum is not changed by distortions of the surface, as \text { long as } q \text { remains outside). So the new "Gauss's Law" holds for any charge configuration. }

(f)  In di↵erential form, “Gauss’s law” reads: \nabla \cdot E +\frac{1}{\lambda^{2}} V=\frac{1}{\epsilon_{0}} \rho , or, putting it all in terms of E:

\nabla \cdot E -\frac{1}{\lambda^{2}} \int E \cdot d l =\frac{1}{\epsilon_{0}} \rho . \text { Since } E =- \nabla V , this also yields “Poisson’s equation”: -\nabla^{2} V+\frac{1}{\lambda^{2}} V=\frac{1}{\epsilon_{0}} \rho.

(g)  Refer to ”Gauss’s law” in di↵erential form (f). Since E is zero, inside a conductor (otherwise charge would move, and in such a direction as to cancel the field), V is constant (inside), and hence ρ is uniform, throughout the volume. Any “extra” charge must reside on the surface. (The fraction at the surface depends on λ, and on the shape of the conductor.)

2.54a
2.54b

Related Answered Questions