Question 2.5: A particle in the infinite square well has as its initial wa...

A particle in the infinite square well has as its initial wave function an even mixture of the first two stationary states: Ψ(x,0) = A[ψ_1(x) + ψ_2(x)] .

(a) Normalize Ψ(x,0) .(That is, find A. This is very easy, if you exploit the orthonormality of ψ_1 and ψ_2 . Recall that, having normalized Ψ at t = 0,you can rest assured that it stays normalized—if you doubt this, check it explicitly after doing part (b).)

(b) Find Ψ(x ,t) and \left|Ψ(x,t)\right| ^2 . Express the latter as a sinusoidal function of time, as in Example 2.1. To simplify the result, let ω ≡ \pi ^2\hbar /2ma^2 .

(c) Compute \left\langle x\right\rangle . Notice that it oscillates in time. What is the angular frequency of the oscillation? What is the amplitude of the oscillation? (If your amplitude is greater than a/2 , go directly to jail.)

(d) Compute \left\langle p\right\rangle . (As Peter Lorre would say, “Do it ze kveek vay, Johnny!”)

(e) If you measured the energy of this particle, what values might you get, and what is the probability of getting each of them? Find the expectation value of H. How does it compare with E_1 and E_2 ?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

|\Psi|^{2}=\Psi^{*} \Psi=|A|^{2}\left(\psi_{1}^{*}+\psi_{2}^{*}\right)\left(\psi_{1}+\psi_{2}\right)=|A|^{2}\left[\psi_{1}^{*} \psi_{1}+\psi_{1}^{*} \psi_{2}+\psi_{2}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}\right] .

1=\int|\Psi|^{2} d x=|A|^{2} \int\left[\left|\psi_{1}\right|^{2}+\psi_{1}^{*} \psi_{2}+\psi_{2}^{*} \psi_{1}+\left|\psi_{2}\right|^{2}\right] d x=2|A|^{2} \Rightarrow A= 1/\sqrt{2} .

(b)

\Psi(x, t)=\frac{1}{\sqrt{2}}\left[\psi_{1} e^{-i E_{1} t / \hbar}+\psi_{2} e^{-i E_{2} t / \hbar}\right]     (but \frac{E_n}{\hbar} = n^2 ω) .

=\frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}}\left[\sin \left(\frac{\pi}{a} x\right) e^{-i \omega t}+\sin \left(\frac{2 \pi}{a} x\right) e^{-i 4 \omega t}\right] = \frac{1}{\sqrt{a}} e^{-i \omega t}\left[\sin \left(\frac{\pi}{a} x\right)+\sin \left(\frac{2 \pi}{a} x\right) e^{-3 i \omega t}\right] .

|\Psi(x, t)|^{2}=\frac{1}{a}\left[\sin ^{2}\left(\frac{\pi}{a} x\right)+\sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right)\left(e^{-3 i \omega t}+e^{3 i \omega t}\right)+\sin ^{2}\left(\frac{2 \pi}{a} x\right)\right] .

= \frac{1}{a}\left[\sin ^{2}\left(\frac{\pi}{a} x\right)+\sin ^{2}\left(\frac{2 \pi}{a} x\right)+2 \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) \cos (3 \omega t)\right] .

(c)

\langle x\rangle=\int x|\Psi(x, t)|^{2} d x .

=\frac{1}{a} \int_{0}^{a} x\left[\sin ^{2}\left(\frac{\pi}{a} x\right)+\sin ^{2}\left(\frac{2 \pi}{a} x\right)+2 \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) \cos (3 \omega t)\right] d x .

\int_{0}^{a} x \sin ^{2}\left(\frac{\pi}{a} x\right) d x=\left.\left[\frac{x^{2}}{4}-\frac{x \sin \left(\frac{2 \pi}{a} x\right)}{4 \pi / a}-\frac{\cos \left(\frac{2 \pi}{a} x\right)}{8(\pi / a)^{2}}\right]\right|_{0} ^{a}=\frac{a^{2}}{4}=\int_{0}^{a} x \sin ^{2}\left(\frac{2 \pi}{a} x\right) d x .

\int_{0}^{a} x \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) d x=\frac{1}{2} \int_{0}^{a} x\left[\cos \left(\frac{\pi}{a} x\right)-\cos \left(\frac{3 \pi}{a} x\right)\right] d x .

=\frac{1}{2}\left[\frac{a^{2}}{\pi^{2}} \cos \left(\frac{\pi}{a} x\right)+\frac{a x}{\pi} \sin \left(\frac{\pi}{a} x\right)-\frac{a^{2}}{9 \pi^{2}} \cos \left(\frac{3 \pi}{a} x\right)-\frac{a x}{3 \pi} \sin \left(\frac{3 \pi}{a} x\right)\right]_{0}^{a} .

=\frac{1}{2}\left[\frac{a^{2}}{\pi^{2}}(\cos (\pi)-\cos (0))-\frac{a^{2}}{9 \pi^{2}}(\cos (3 \pi)-\cos (0))\right]=-\frac{a^{2}}{\pi^{2}}\left(1-\frac{1}{9}\right)=-\frac{8 a^{2}}{9 \pi^{2}} .

\therefore\langle x\rangle=\frac{1}{a}\left[\frac{a^{2}}{4}+\frac{a^{2}}{4}-\frac{16 a^{2}}{9 \pi^{2}} \cos (3 \omega t)\right] = \frac{a}{2}\left[1-\frac{32}{9 \pi^{2}} \cos (3 \omega t)\right] .

Amplitude: \frac{32}{9 \pi^{2}}\left(\frac{a}{2}\right)=0.3603(a / 2) ;    angular frequency: 3 \omega=\frac{3 \pi^{2} \hbar}{2 m a^{2}} .

(d)

\langle p\rangle =m \frac{d\langle x\rangle}{d t}=m\left(\frac{a}{2}\right)\left(-\frac{32}{9 \pi^{2}}\right)(-3 \omega) \sin (3 \omega t)= \frac{8 \hbar}{3 a} \sin (3 \omega t) .

(e) You could get either E_{1}=\pi^{2} \hbar^{2} / 2 m a^{2} or E_{2} = 2 \pi^{2} \hbar^{2} /  m a^{2} , with equal probability P_1 = P_2 = 1/2 .

So \langle H\rangle = [latex] \frac{1}{2}\left(E_{1}+E_{2}\right)=\frac{5 \pi^{2} \hbar^{2}}{4 m a^{2}} ; it's the average of E_1 and E_2 .

Related Answered Questions