(a)
|\Psi|^{2}=\Psi^{*} \Psi=|A|^{2}\left(\psi_{1}^{*}+\psi_{2}^{*}\right)\left(\psi_{1}+\psi_{2}\right)=|A|^{2}\left[\psi_{1}^{*} \psi_{1}+\psi_{1}^{*} \psi_{2}+\psi_{2}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}\right] .
1=\int|\Psi|^{2} d x=|A|^{2} \int\left[\left|\psi_{1}\right|^{2}+\psi_{1}^{*} \psi_{2}+\psi_{2}^{*} \psi_{1}+\left|\psi_{2}\right|^{2}\right] d x=2|A|^{2} \Rightarrow A= 1/\sqrt{2} .
(b)
\Psi(x, t)=\frac{1}{\sqrt{2}}\left[\psi_{1} e^{-i E_{1} t / \hbar}+\psi_{2} e^{-i E_{2} t / \hbar}\right] (but \frac{E_n}{\hbar} = n^2 ω) .
=\frac{1}{\sqrt{2}} \sqrt{\frac{2}{a}}\left[\sin \left(\frac{\pi}{a} x\right) e^{-i \omega t}+\sin \left(\frac{2 \pi}{a} x\right) e^{-i 4 \omega t}\right] = \frac{1}{\sqrt{a}} e^{-i \omega t}\left[\sin \left(\frac{\pi}{a} x\right)+\sin \left(\frac{2 \pi}{a} x\right) e^{-3 i \omega t}\right] .
|\Psi(x, t)|^{2}=\frac{1}{a}\left[\sin ^{2}\left(\frac{\pi}{a} x\right)+\sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right)\left(e^{-3 i \omega t}+e^{3 i \omega t}\right)+\sin ^{2}\left(\frac{2 \pi}{a} x\right)\right] .
= \frac{1}{a}\left[\sin ^{2}\left(\frac{\pi}{a} x\right)+\sin ^{2}\left(\frac{2 \pi}{a} x\right)+2 \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) \cos (3 \omega t)\right] .
(c)
\langle x\rangle=\int x|\Psi(x, t)|^{2} d x .
=\frac{1}{a} \int_{0}^{a} x\left[\sin ^{2}\left(\frac{\pi}{a} x\right)+\sin ^{2}\left(\frac{2 \pi}{a} x\right)+2 \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) \cos (3 \omega t)\right] d x .
\int_{0}^{a} x \sin ^{2}\left(\frac{\pi}{a} x\right) d x=\left.\left[\frac{x^{2}}{4}-\frac{x \sin \left(\frac{2 \pi}{a} x\right)}{4 \pi / a}-\frac{\cos \left(\frac{2 \pi}{a} x\right)}{8(\pi / a)^{2}}\right]\right|_{0} ^{a}=\frac{a^{2}}{4}=\int_{0}^{a} x \sin ^{2}\left(\frac{2 \pi}{a} x\right) d x .
\int_{0}^{a} x \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{2 \pi}{a} x\right) d x=\frac{1}{2} \int_{0}^{a} x\left[\cos \left(\frac{\pi}{a} x\right)-\cos \left(\frac{3 \pi}{a} x\right)\right] d x .
=\frac{1}{2}\left[\frac{a^{2}}{\pi^{2}} \cos \left(\frac{\pi}{a} x\right)+\frac{a x}{\pi} \sin \left(\frac{\pi}{a} x\right)-\frac{a^{2}}{9 \pi^{2}} \cos \left(\frac{3 \pi}{a} x\right)-\frac{a x}{3 \pi} \sin \left(\frac{3 \pi}{a} x\right)\right]_{0}^{a} .
=\frac{1}{2}\left[\frac{a^{2}}{\pi^{2}}(\cos (\pi)-\cos (0))-\frac{a^{2}}{9 \pi^{2}}(\cos (3 \pi)-\cos (0))\right]=-\frac{a^{2}}{\pi^{2}}\left(1-\frac{1}{9}\right)=-\frac{8 a^{2}}{9 \pi^{2}} .
\therefore\langle x\rangle=\frac{1}{a}\left[\frac{a^{2}}{4}+\frac{a^{2}}{4}-\frac{16 a^{2}}{9 \pi^{2}} \cos (3 \omega t)\right] = \frac{a}{2}\left[1-\frac{32}{9 \pi^{2}} \cos (3 \omega t)\right] .
Amplitude: \frac{32}{9 \pi^{2}}\left(\frac{a}{2}\right)=0.3603(a / 2) ; angular frequency: 3 \omega=\frac{3 \pi^{2} \hbar}{2 m a^{2}} .
(d)
\langle p\rangle =m \frac{d\langle x\rangle}{d t}=m\left(\frac{a}{2}\right)\left(-\frac{32}{9 \pi^{2}}\right)(-3 \omega) \sin (3 \omega t)= \frac{8 \hbar}{3 a} \sin (3 \omega t) .
(e) You could get either E_{1}=\pi^{2} \hbar^{2} / 2 m a^{2} or E_{2} = 2 \pi^{2} \hbar^{2} / m a^{2} , with equal probability P_1 = P_2 = 1/2 .
So \langle H\rangle = [latex] \frac{1}{2}\left(E_{1}+E_{2}\right)=\frac{5 \pi^{2} \hbar^{2}}{4 m a^{2}} ; it's the average of E_1 and E_2 .