Question 12.119: (a) Express the eccentricity ε of the elliptic orbit describ...

(a) Express the eccentricity ε of the elliptic orbit described by a satellite about a planet in terms of the distances { r }_{ 0 } and { r }_{ 1 } corresponding, respectively, to the perigee and apogee of the orbit. (b) Use the result obtained in Part a and the data given in Problem 12.109, where { R }_{ E }=149.6\times { 10 }^{ 6 } \ km, to determine the approximate maximum distance from the sun reached by comet Hyakutake.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) We have \quad \quad \quad \frac{1}{r}=\frac{G M}{h^2}(1+\varepsilon \cos \theta)              Eq. (12.39′)

At A, θ = 0: \quad \quad\frac{1}{r_0}=\frac{G M}{h^2}(1+\varepsilon)

or \quad \quad \frac{h^2}{G M}=r_0(1+\varepsilon)

At B, θ =  180° : \quad \quad\frac{1}{r_1}=\frac{G M}{h^2}(1-\varepsilon)

or \quad \quad \frac{h^2}{G M}=r_1(1-\varepsilon)

Then \quad \quad r_0(1+\varepsilon)=r_1(1-\varepsilon)

or \quad \quad \quad \quad \quad \quad \varepsilon=\frac{r_1-r_0}{r_1+r_0}\blacktriangleleft

(b) From above, \quad \quad \quad r_1=\frac{1+ \varepsilon }{1- \varepsilon } r_0

where \quad \quad r_0=0.230 R_E

Then \quad \quad r_1=\frac{1+0.999887}{1-0.999887} \times 0.230\left(149.6 \times 10^9 m \right)

or  \quad \quad \quad \quad \quad \quad r_1=609 \times 10^{12}  m \blacktriangleleft

Note: r_1=4070 R_E \quad \text { or } \quad r_1=0.064 \text { lightyears. }

Related Answered Questions