Using the AISC equations, select from Appendix B the lightest-weight structural A992 steel column that is 12 ft long and supports an axial load of 40 kip. The ends are fixed.
Using the AISC equations, select from Appendix B the lightest-weight structural A992 steel column that is 12 ft long and supports an axial load of 40 kip. The ends are fixed.
Try W6 \times 9 \quad A=2.68 \mathrm{in}^{2} \quad r_{y}=0.905 \mathrm{in}
\left(\frac{K L}{r}\right)_{c}=\sqrt{\frac{2 \pi^{2} E}{\sigma_{Y}}}=\sqrt{\frac{2 \pi^{2}(29)\left(10^{3}\right)}{50}}=107 \\\frac{K L}{r_{y}}=\frac{0.5(12)(12)}{0.905}=79.56 \\\frac{K L}{r_{y}}<\left(\frac{K L}{r}\right)_{c}Intermediate column
\sigma_{\text {allow }} =\frac{\left[1-\frac{1}{2}\left(\frac{K L / r}{(K L / r)}\right)^{2}\right] \sigma_{y}}{\left[\frac{5}{3}+\frac{3}{8}\left(\frac{K L / r}{(K L / r)_{c}}\right)-\frac{1}{8}\left(\frac{K L / r}{(K L / r)_{c}}\right)^{3}\right]}=\frac{\left[1-\frac{1}{2}\left(\frac{79.56}{107}\right)^{2}\right] 50}{\left[\frac{5}{3}+\frac{3}{8}\left(\frac{79.56}{107}\right)-\frac{1}{8}\left(\frac{79.56}{107}\right)^{3}\right]}=15.40 \mathrm{ksi} \\P_{\text {allow }} =\sigma_{\text {allow }} A \\=19.10(2.68) \\=51.2 \mathrm{kip}>40 \mathrm{kip} \quad \mathrm{OK}Use W6 \times 9