Question 6.106: A 500 mm wide by 3 mm thick by 2 m long aluminum sheet is to...

A 500 mm wide by 3 mm thick by 2 m long aluminum sheet is to be formed into a hollow section by bending through 360° and welding (i.e., butt-welding) the long edges together. Assume a cross-sectional medial length of 500 mm (no stretching of the sheet due to bending). If the maximum shear stress must be limited to 75 MPa, determine the maximum torque that can be carried by the hollow section if
(a) the shape of the section is a circle.
(b) the shape of the section is an equilateral triangle.
(c) the shape of the section is a square.
(d) the shape of the section is a 150 × 100 mm rectangle.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The maximum shear stress for a thin-walled section is given by Eq. (6.25)

τmax=T2Amt\tau_{\max }=\frac{T}{2 A_{m} t}

and thus, the maximum torque that can be carried by the hollow section is

Tmax=2τmaxAmtT_{\max }=2 \tau_{\max } A_{m} t

(a) Circle:

πdm=500 mmdm=159.155 mmAm=π4(159.155 mm)2=19,894.382 mm2Tmax=2τmaxAmt=2(75 N/mm2)(19,894.382 mm2)(3 mm)=8,952,472 Nmm=8.95 kNm\begin{aligned}&\pi d_{m}=500  mm \quad \therefore d_{m}=159.155  mm \\&A_{m}=\frac{\pi}{4}(159.155  mm )^{2}=19,894.382  mm ^{2} \\&T_{\max }=2 \tau_{\max } A_{m} t=2\left(75  N / mm ^{2}\right)\left(19,894.382  mm ^{2}\right)(3  mm )=8,952,472  N – mm =8.95  kN – m\end{aligned}

(b) Equilateral triangle: 

triangle sides are each 500 mm/3=166.667 mm500  mm / 3=166.667  mm

Am=12bh=12(166.667 mm)(166.667 mm)sin60=12,028.131 mm2Tmax=2τmaxAmt=2(75 N/mm2)(12,028.131 mm2)(3 mm)=5,412,659 Nmm=5.41 kNm\begin{aligned}&A_{m}=\frac{1}{2} b h=\frac{1}{2}(166.667  mm )(166.667  mm ) \sin 60^{\circ}=12,028.131  mm ^{2} \\&T_{\max }=2 \tau_{\max } A_{m} t=2\left(75  N / mm ^{2}\right)\left(12,028.131  mm ^{2}\right)(3  mm )=5,412,659  N – mm =5.41  kN – m\end{aligned}

(c) Square: 

sides of the square are each  500 mm/4=125 mm500  mm / 4=125  mm

Am=bh=(125 mm)(125 mm)=15,625 mm2Tmax=2τmaxAmt=2(75 N/mm2)(15,625 mm2)(3 mm)=7,031,250 Nmm=7.03 kNm\begin{aligned}&A_{m}=b h=(125  mm )(125  mm )=15,625  mm ^{2} \\&T_{\max }=2 \tau_{\max } A_{m} t=2\left(75  N / mm ^{2}\right)\left(15,625  mm ^{2}\right)(3  mm )=7,031,250  N – mm =7.03  kN – m\end{aligned}

(d) 150 × 100 mm rectangle: 

Am=bh=(150 mm)(100 mm)=15,000 mm2Tmax=2τmaxAmt=2(75 N/mm2)(15,000 mm2)(3 mm)=6,750,000 Nmm=6.75 kNm\begin{aligned}&A_{m}=b h=(150  mm )(100  mm )=15,000  mm ^{2} \\&T_{\max }=2 \tau_{\max } A_{m} t=2\left(75  N / mm ^{2}\right)\left(15,000  mm ^{2}\right)(3  mm )=6,750,000  N – mm =6.75  kN – m\end{aligned}

 

Related Answered Questions