Question 3.15: A rectangular pipe, running parallel to the z-axis (from −∞ ...

A rectangular pipe, running parallel to the z-axis (from -∞ to +∞), has three grounded metal sides, at y = 0, y = a, and x = 0. The fourth side, at x = b, is maintained at a specified potential V_{0}(y) .

(a) Develop a general formula for the potential inside the pipe

(b) Find the potential explicitly, for the case V_{0}(y)=V_{0} (aconstant).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0 , with boundary conditions

\left\{\begin{array}{l}\text { (i) } V(x, 0)=0, \\\text { (ii) } V(x, a)=0, \\\text { (iii) } V(0, y)=0, \\\text { (iv) } V(b, y)=V_{0}(y) .\end{array}\right\}

As in Ex. 3.4, separation of variables yields

V(x, y)=\left(A e^{k x}+B e^{-k x}\right)(C \sin k y+D \cos k y) .

Here \text { (i) } \Rightarrow D=0, \text { (iii) } \Rightarrow B=-A,( ii ) \Rightarrow k a \text { is an integer multiple of } \pi :

V(x, y)=A C\left(e^{n \pi x / a}-e^{-n \pi x / a}\right) \sin (n \pi y / a)=(2 A C) \sinh (n \pi x / a) \sin (n \pi y / a).

But (2AC) is a constant, and the most general linear combination of separable solutions consistent with (i), (ii), (iii) is

V(x, y)=\sum_{n=1}^{\infty} C_{n} \sinh (n \pi x / a) \sin (n \pi y / a) .

It remains to determine the coe!cients C_{n} so as to fit boundary condition (iv):

\sum C_{n} \sinh (n \pi b / a) \sin (n \pi y / a)=V_{0}(y) . \text { Fourier's trick } \Rightarrow C_{n} \sinh (n \pi b / a)=\frac{2}{a}\int\limits_{0}^{a}{} V_{0}(y) \sin (n \pi y / a) d y .

Therefore

C_{n}=\frac{2}{a \sinh (n \pi b / a)} \int\limits_{0}^{a}{} V_{0}(y) \sin (n \pi y / a) d y .

(b)   C_{n}=\frac{2}{a \sinh (n \pi b / a)} V_{0} \int\limits_{0}^{a}{} \sin (n \pi y / a) d y=\frac{2 V_{0}}{a \sinh (n \pi b / a)} \times\left\{\begin{array}{c}0, \text { if } n \text { is even, } \\\frac{2 a}{n \pi}, \text { if } n \text { is odd. }\end{array}\right\}

 

V(x, y)=\frac{4 V_{0}}{\pi} \sum_{n=1,3,5, \ldots} \frac{\sinh (n \pi x / a) \sin (n \pi y / a)}{n \sinh (n \pi b / a)} .

3.15

Related Answered Questions