Question 2.21: The gaussian wave packet. A free particle has the initial wa...

The gaussian wave packet. A free particle has the initial wave function

\Psi(x, 0)=A e^{-a x^{2}} ,

where A and a are (real and positive) constants.

(a) Normalize Ψ(x,0).

(b) Find Ψ(x,t). Hint: Integrals of the form

\int_{-\infty}^{+\infty} e^{-\left(a x^{2}+b x\right)} d x .

can be handled by “completing the square”: Let y ≡ \sqrt{a} [x +(b/2a)] , and note that \left(a x^{2}+b x\right)=y^{2}-\left(b^{2} / 4 a\right) . Answer:

\Psi(x, t)=\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{1}{\gamma} e^{-a x^{2} / \gamma^{2}}   , where \gamma \equiv \sqrt{1+(2 i \hbar a t / m)} .    (2.111)

(c) Find |\Psi(x, t)|^{2} . Express your answer in terms of the quantity

w \equiv \sqrt{a /\left[1+(2 \hbar a t / m)^{2}\right]} .

Sketch \left|\Psi \right| ^2 (as a function x) of at t = 0 , and again for some very large t. Qualitatively, what happens to \left|\Psi \right| ^2 , as time goes on?

(d) Find \left\langle x\right\rangle  , \left\langle p\right\rangle , \left\langle x^2\right\rangle , \left\langle p^2\right\rangle and σ_p . Partial answer: \left\langle p^2\right\rangle = ah^2 ,but it may take some algebra to reduce it to this simple form.

(e) Does the uncertainty principle hold? At what time t does the system come closest to the uncertainty limit?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

1=|A|^{2} \int_{-\infty}^{\infty} e^{-2 a x^{2}} d x=|A|^{2} \sqrt{\frac{\pi}{2 a}} ;    A=\left(\frac{2 a}{\pi}\right)^{1 / 4} .

(b)

\int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x\right)} d x=\int_{-\infty}^{\infty} e^{-y^{2}+\left(b^{2} / 4 a\right)} \frac{1}{\sqrt{a}} d y=\frac{1}{\sqrt{a}} e^{b^{2} / 4 a} \int_{-\infty}^{\infty} e^{-y^{2}} d y=\sqrt{\frac{\pi}{a}} e^{b^{2} / 4 a} .

\phi(k)=\frac{1}{\sqrt{2 \pi}} A \int_{-\infty}^{\infty} e^{-a x^{2}} e^{-i k x} d x=\frac{1}{\sqrt{2 \pi}}\left(\frac{2 a}{\pi}\right)^{1 / 4} \sqrt{\frac{\pi}{a}} e^{-k^{2} / 4 a}=\frac{1}{(2 \pi a)^{1 / 4}} e^{-k^{2} / 4 a} .

\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \frac{1}{(2 \pi a)^{1 / 4}} \int_{-\infty}^{\infty} \underbrace{e^{-k^{2} / 4 a} e^{i\left(k x-\hbar k^{2} t / 2 m\right)}}_{e^{-\left[\left(\frac{1}{4 a}+i h t / 2 m\right) k^{2}-i x k\right]}} d k .

=\frac{1}{\sqrt{2 \pi}(2 \pi a)^{1 / 4}} \frac{\sqrt{\pi}}{\sqrt{\frac{1}{4 a}+i \hbar t / 2 m}} e^{-x^{2} / 4\left(\frac{1}{4 a}+i \hbar t / 2 m\right)} = \left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{e^{-a x^{2} /(1+2 i \hbar a t / m)}}{\sqrt{1+2 i \hbar a t / m}} .

(c)

Let \theta \equiv 2 \hbar a t / m .  Then |\Psi|^{2}=\sqrt{\frac{2 a}{\pi}} \frac{e^{-a x^{2} /(1+i \theta)} e^{-a x^{2} /(1-i \theta)}}{\sqrt{(1+i \theta)(1-i \theta)}} .

The exponent is

-\frac{a x^{2}}{(1+i \theta)}-\frac{a x^{2}}{(1-i \theta)}=-a x^{2} \frac{(1-i \theta+1+i \theta)}{(1+i \theta)(1-i \theta)}=\frac{-2 a x^{2}}{1+\theta^{2}} ;          |\Psi|^{2}=\sqrt{\frac{2 a}{\pi}} \frac{e^{-2 a x^{2} /\left(1+\theta^{2}\right)}}{\sqrt{1+\theta^{2}}} .

Or, with w \equiv \sqrt{\frac{a}{1+\theta^{2}}} , |\Psi|^{2}=\sqrt{\frac{2}{\pi}} w e^{-2 w^{2} x^{2}} . As t increases, the graph of |\Psi|^{2} attens out and broadens.

(d)

\langle x\rangle=\int_{-\infty}^{\infty} x|\Psi|^{2} d x= 0 (odd integrand); \langle p\rangle = \frac{d \langle x\rangle}{dt} = 0 .

\left\langle x^{2}\right\rangle=\sqrt{\frac{2}{\pi}} w \int_{-\infty}^{\infty} x^{2} e^{-2 w^{2} x^{2}} d x=\sqrt{\frac{2}{\pi}} w \frac{1}{4 w^{2}} \sqrt{\frac{\pi}{2 w^{2}}} = \frac{1}{4w^2} , \left\langle p^{2}\right\rangle=-\hbar^{2} \int_{-\infty}^{\infty} \Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}} d x .

Write \Psi=B e^{-b x^{2}} , where B \equiv\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{1+i \theta}} and b \equiv \frac{a}{1+i \theta} .

\frac{\partial^{2} \Psi}{\partial x^{2}}=B \frac{\partial}{\partial x}\left(-2 b x e^{-b x^{2}}\right)=-2 b B\left(1-2 b x^{2}\right) e^{-b x^{2}} .

\Psi^{*} \frac{\partial^{2} \Psi}{d \partial x^{2}}=-2 b|B|^{2}\left(1-2 b x^{2}\right) e^{-\left(b+b^{*}\right) x^{2}}   ;  b+b^{*}=\frac{a}{1+i \theta}+\frac{a}{1-i \theta}=\frac{2 a}{1+\theta^{2}}=2 w^{2} .

|B|^{2}=\sqrt{\frac{2 a}{\pi}} \frac{1}{\sqrt{1+\theta^{2}}}=\sqrt{\frac{2}{\pi}} w . So \Psi^{*} \frac{\partial^{2} \Psi}{\partial x^{2}}=-2 b \sqrt{\frac{2}{\pi}} w\left(1-2 b x^{2}\right) e^{-2 w^{2} x^{2}} .

\left\langle p^{2}\right\rangle=2 b \hbar^{2} \sqrt{\frac{2}{\pi}} w \int_{-\infty}^{\infty}\left(1-2 b x^{2}\right) e^{-2 w^{2} x^{2}} d x .

=2 b \hbar^{2} \sqrt{\frac{2}{\pi}} w\left(\sqrt{\frac{\pi}{2 w^{2}}}-2 b \frac{1}{4 w^{2}} \sqrt{\frac{\pi}{2 w^{2}}}\right)=2 b \hbar^{2}\left(1-\frac{b}{2 w^{2}}\right) .

But 1-\frac{b}{2 w^{2}}=1-\left(\frac{a}{1+i \theta}\right)\left(\frac{1+\theta^{2}}{2 a}\right)=1-\frac{(1-i \theta)}{2}=\frac{1+i \theta}{2}=\frac{a}{2 b} , so

\left\langle p^{2}\right\rangle=2 b \hbar^{2} \frac{a}{2 b}=\hbar^{2}a ,    \sigma_{x}=\frac{1}{2 w} ;    \sigma_{p}=\hbar \sqrt{a} .

(e)

\sigma_{x} \sigma_{p}=\frac{1}{2 w} \hbar \sqrt{a}=\frac{\hbar}{2} \sqrt{1+\theta^{2}}=\frac{\hbar}{2} \sqrt{1+(2 \hbar a t / m)^{2}} \geq \frac{\hbar}{2} .

Closest at t = 0 at which time it is right at the uncertainty limit.

13

Related Answered Questions