Question 2.40: A particle of mass m in the harmonic oscillator potential (E...

A particle of mass m in the harmonic oscillator potential (Equation 2.44) starts out in the state

\Psi(x, 0)=A\left(1-2 \sqrt{\frac{m \omega}{\hbar}} x\right)^{2} e^{-\frac{m \omega}{2 \hbar} x^{2}} , for some constant A.

V(x)=\frac{1}{2} m \omega^{2} x^{2}         (2.44).

(a) Determine A and the coefficients c_n in the expansion of this state in terms of the stationary states of the harmonic oscillator.

(b) In a measurement of the particle’s energy, what results could you get, and what are their probabilities? What is the expectation value of the energy?

(c) At a later time T the wave function is

\Psi(x, T)=B\left(1+2 \sqrt{\frac{m \omega}{\hbar}} x\right)^{2} e^{-\frac{m \omega}{2 \hbar} x^{2}} ,

for some constant B. What is the smallest possible value of T?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) In the standard notation \xi \equiv \sqrt{m \omega / \hbar} x, \alpha \equiv(m \omega / \pi \hbar)^{1 / 4} .

\Psi(x, 0)=A(1-2 \xi)^{2} e^{-\xi^{2} / 2}=A\left(1-4 \xi+4 \xi^{2}\right) e^{-\xi^{2} / 2} .

It can be expressed as a linear combination of the first three stationary states (Eq. 2.60 and 2.63, and Problem 2.10):

\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}}       (2.60).

\psi_{1}(x)=A_{1} \hat{a}_{+} \psi_{0}=\frac{A_{1}}{\sqrt{2 \hbar m \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right)\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}}

=A_{1}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \sqrt{\frac{2 m \omega}{\hbar}} x e^{-\frac{m \omega}{2 \hbar} x^{2}}         (2.63).

\psi_{0}(x)=\alpha e^{-\xi^{2} / 2} ,

\psi_{1}(x)=\sqrt{2} \alpha \xi e^{-\xi^{2} / 2} ,

\psi_{2}(x)=\frac{\alpha}{\sqrt{2}}\left(2 \xi^{2}-1\right) e^{-\xi^{2} / 2} .

So \Psi(x, 0)=c_{0} \psi_{0}+c_{1} \psi_{1}+c_{2} \psi_{2}=\alpha\left(c_{0}+\sqrt{2} \xi c_{1}+\sqrt{2} \xi^{2} c_{2}-\frac{1}{\sqrt{2}} c_{2}\right) e^{-\xi^{2} / 2} , with (equating like powers)

\begin{cases}\alpha \sqrt{2} c_{2}=4 A & \Rightarrow c_{2}=2 \sqrt{2} A / \alpha \\ \alpha \sqrt{2} c_{1}=-4 A & \Rightarrow c_{1}=-2 \sqrt{2} A / \alpha \\ \alpha\left(c_{0}-c_{2} / \sqrt{2}\right)=A & \Rightarrow c_{0}=(A / \alpha)+c_{2} / \sqrt{2}=(1+2) A / \alpha=3 A / \alpha\end{cases} .

Normalizing: 1=\left|c_{0}\right|^{2}+\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}=(8+8+9)(A / \alpha)^{2}=25(A / \alpha)^{2} \Rightarrow A=\alpha / 5 = \frac{1}{5}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} .

c_{0}=\frac{3}{5}, \quad c_{1}=-\frac{2 \sqrt{2}}{5}, \quad c_{2}=\frac{2 \sqrt{2}}{5} .

(b) You could get \frac{1}{2} \hbar \omega probability,  \frac{9}{25} ; \frac{3}{2} \hbar \omega, , probability \frac{8}{25} ; \frac{5}{2} \hbar \omega, , probability \frac{8}{25}

\langle H\rangle=\frac{9}{25}\left(\frac{1}{2} \hbar \omega\right)+\frac{8}{25}\left(\frac{3}{2} \hbar \omega\right)+\frac{8}{25}\left(\frac{5}{2} \hbar \omega\right)=\frac{\hbar \omega}{50}(9+24+40) = \frac{73}{50} \hbar \omega .

(c)

\Psi(x, t)=\frac{3}{5} \psi_{0} e^{-i \omega t / 2}-\frac{2 \sqrt{2}}{5} \psi_{1} e^{-3 i \omega t / 2}+\frac{2 \sqrt{2}}{5} \psi_{2} e^{-5 i \omega t / 2}=e^{-i \omega t / 2}\left[\frac{3}{5} \psi_{0}-\frac{2 \sqrt{2}}{5} \psi_{1} e^{-i \omega t}+\frac{2 \sqrt{2}}{5} \psi_{2} e^{-2 i \omega t}\right] .

To change the sign of the middle term we need e^{-i \omega T}=-1 (then e^{-2 i \omega T}=1 ); evidently \omega T=\pi , or T = π/ω.

Related Answered Questions