Question 8.21: Determine the voltage across the load resistor and the curre...

Determine the voltage across the load resistor and the current through the load resistor in the bridge circuit in Figure 8-66. Notice that the resistors are labeled for convenient conversion using Equations 8-1 : R_{1}= \frac{R_{A}R_{C}}{R_{A}+ R_{B}+ R_{C}}, 8-2 : R_{2}= \frac{R_{B}R_{C}}{R_{A}+ R_{B}+ R_{C}}, and 8-3 : R_{1}= \frac{R_{A}R_{B}}{R_{A}+ R_{B}+ R_{C}}. R_{C} is the load resistor.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First, convert the delta formed by R_{A},R_{b} and R_{c} to a wye.

R_{1}= \frac{R_{A}R_{C}}{R_{A}+ R_{B}+ R_{C}}= \frac{(2.2 \ k\Omega )(18 \ k\Omega )}{2.2 \ k\Omega +2.7 \ k\Omega + 18 \ k\Omega }= 1.73 \ k\Omega

 

R_{2}= \frac{R_{B}R_{C}}{R_{A}+ R_{B}+ R_{C}}= \frac{(2.7 \ k\Omega )(18 \ k\Omega )}{22.9  \ k\Omega  }= 2.12 \ k\Omega

 

R_{3}= \frac{R_{A}R_{B}}{R_{A}+ R_{B}+ R_{C}}= \frac{(2.2 \ k\Omega )(2.7 \ k\Omega )}{22.9 \ k\Omega }= 259 \ \Omega

The resulting equivalent series-parallel circuit is shown in Figure 8-67.
Next, determine R_{T} and the branch currents in Figure 8-67.

R_{T}= \frac{(R_{1}+ R_{D})(R_{2}+ R_{E})}{(R_{1}+ R_{D})+ (R_{2}+ R_{E})} + R_{3}

 

\ \ \ \ \ = \frac{(6.43 \ k\Omega )(6.02 \ k\Omega )}{6.43 \ k\Omega + 6.02 \ k\Omega} + 259 \ \Omega = 3.11 \ \Omega + 259 \ \Omega = 3.37 \ k\Omega

 

I_{T}= \frac{V_{AR}}{R_{T}}= \frac{12 \ V}{3.37 \ k\Omega } = 3.56 \ mA

The total resistance of the parallel part of the circuit, R_{T(P)}is 3.11 k\Omega,

I_{AC}= \left(\frac{R_{T(P)}}{R_{1}+ R_{D}} \right)I_{T}= (\frac{3.11 \ k\Omega }{1.73 \ k\Omega + 4.7 \ k\Omega} )3.56 \ mA = 1.72 \ mA

 

I_{AD}= \left(\frac{R_{T(P)}}{R_{2}+ R_{E}} \right)I_{T}= (\frac{3.11 \ k\Omega }{2.12 \ k\Omega + 3.9 \ k\Omega} )3.56 \ mA = 1.84 \ mA

The voltage from terminal C to terminal D  is

V_{CD}= I_{AD}R_{E}- I_{AC}R_{D}= (1.84 \ mA)(3.9 \ k\Omega )- (1.72 \ mA)(4.7 \ k\Omega )

 

\ \ \ \ \ \ \ = 7.18 \ V – 8.08 \ V = – 0.9 \ V

V_{CD} is the voltage across the load (R_{C}) in the bridge circuit shown in Figure 8-66. The load current through R_{C} is

I_{R_{C}}= \frac{V_{CD}}{R_{C}}= \frac{-0.9 \ V}{18 \ k\Omega } =- 50 \ \mu A
Screenshot (554)

Related Answered Questions

Use Equations 8-4 : R_{A}= \frac{R_{1}R_{2}...
Step 1 : Find the current through R_{2}[/la...
Step 1: Find the current through the 100 Ω resisto...
Step 1: Find the current through R_{3}[/lat...