Question 3.45: A long cylindrical shell of radius R carries a uniform surfa...

A long cylindrical shell of radius R carries a uniform surface charge \sigma_{0} on the upper half and an opposite charge -\sigma_{0} on the lower half (Fig. 3.40). Find the electric potential inside and outside the cylinder

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use separation of variables in cylindrical coordinates (Prob. 3.24):

V(s, \phi)=a_{0}+b_{0} \ln s+\sum_{k=1}^{\infty}\left[s^{k}\left(a_{k} \cos k \phi+b_{k} \sin k \phi\right)+s^{-k}\left(c_{k} \cos k \phi+d_{k} \sin k \phi\right)\right] .

s<R: \quad V(s, \phi)=\sum_{k=1}^{\infty} s^{k}\left(a_{k} \cos k \phi+b_{k} \sin k \phi\right) \quad\left(\ln s \text { and } s^{-k} \text { blow up at } s=0\right) ;

s>R: V(s, \phi)=\sum_{k=1}^{\infty} s^{-k}\left(c_{k} \cos k \phi+d_{k} \sin k \phi\right) \quad\left(\ln s \text { and } s^{k} \text { blow up as } s \rightarrow \infty\right) .

(We may as well pick constants so 0 as → ∞ , and hence a_{0}=0.) Continuity at s = R ⇒

\sum R^{k}\left(a_{k} \cos k \phi+b_{k} \sin k \phi\right)=\sum R^{-k}\left(c_{k} \cos k \phi+d_{k} \sin k \phi\right), \text { so } c_{k}=R^{2 k} a_{k}, d_{k}=R^{2 k} b_{k} . Eq. 2.36 says:

\left.\frac{\partial V}{\partial s}\right|_{R^{+}}-\left.\frac{\partial V}{\partial s}\right|_{R^{-}}=-\frac{1}{\epsilon_{0}} \sigma . Therefore

\frac{\partial V_{ above }}{\partial n}-\frac{\partial V_{\text {below }}}{\partial n}=-\frac{1}{\epsilon_{0}} \sigma                    (2.36)

\sum \frac{-k}{R^{k+1}}\left(c_{k} \cos k \phi+d_{k} \sin k \phi\right)-\sum k R^{k-1}\left(a_{k} \cos k \phi+b_{k} \sin k \phi\right)=-\frac{1}{\epsilon_{0}} \sigma ,

or:

\sum 2 k R^{k-1}\left(a_{k} \cos k \phi+b_{k} \sin k \phi\right)=\left\{\begin{array}{ll}\sigma_{0} / \epsilon_{0} & (0<\phi<\pi) \\ -\sigma_{0} / \epsilon_{0} & (\pi<\phi<2 \pi)\end{array}\right\} .

Fourier’s trick: multiply by (\cos l \phi) d \phi and integrate from 0 to 2π, using

\int_{0}^{2 \pi} \sin k \phi \cos l \phi d \phi=0 ; \quad \int_{0}^{2 \pi} \cos k \phi \cos l \phi d \phi=\left\{\begin{array}{l}0, k \neq l \\\pi, k=l\end{array}\right\} .

Then

2 l R^{l-1} \pi a_{l}=\frac{\sigma_{0}}{\epsilon_{0}}\left[\int_{0}^{\pi} \cos l \phi d \phi-\int_{\pi}^{2 \pi} \cos l \phi d \phi\right]=\frac{\sigma_{0}}{\epsilon_{0}}\left\{\left.\frac{\sin l \phi}{l}\right|_{0} ^{\pi}-\left.\frac{\sin l \phi}{l}\right|_{\pi} ^{2 \pi}\right\}=0 ; \quad a_{l}=0 .

Multiply by (\sin l \phi) d \phi and integrate, using \int_{0}^{2 \pi} \sin k \phi \sin l \phi d \phi=\left\{\begin{array}{l}0, k \neq l \\\pi, k=l\end{array}\right\} :

2 l R^{l-1} \pi b_{l}=\frac{\sigma_{0}}{\epsilon_{0}}\left[\int_{0}^{\pi} \sin l \phi d \phi-\int_{\pi}^{2 \pi} \sin l \phi d \phi\right]=\frac{\sigma_{0}}{\epsilon_{0}}\left\{-\left.\frac{\cos l \phi}{l}\right|_{0} ^{\pi}+\left.\frac{\cos l \phi}{l}\right|_{\pi} ^{2 \pi}\right\}=\frac{\sigma_{0}}{l \epsilon_{0}}(2-2 \cos l \pi)

 

=\left\{\begin{array}{lr}0, & \text { if } l \text { is even } \\ 4 \sigma_{0} / l \epsilon_{0}, & \text { if } l \text { is odd }\end{array}\right\} \Rightarrow b_{l}=\left\{\begin{array}{ll}0, & \text { if } l \text { is even } \\2 \sigma_{0} / \pi \epsilon_{0} l^{2} R^{l-1},& \text { if } l \text { is odd }\end{array}\right\} .

Conclusion:

V(s, \phi)=\frac{2 \sigma_{0} R}{\pi \epsilon_{0}} \sum_{k=1,3,5, \ldots} \frac{1}{k^{2}} \sin k \phi\left\{\begin{array}{l}(s / R)^{k} & (s<R) \\(R / s)^{k} &(s>R)\end{array}\right\} .

Related Answered Questions