Question 3.9: Calculate the standard heat of reaction for the following re...

Calculate the standard heat of reaction for the following reaction: the hydrogenation of benzene to cyclohexane.
(1) C_{6}H_{6}\left(g\right)+3H_{2}\left(g\right)\longrightarrow C_{6}H_{12}\left(g\right)
(2) C_{6}H_{6}\left(g\right)+7\frac{1}{2}O_{2}\left(g\right)\longrightarrow 6CO_{2\left(g\right) }+3H_{2}O (1)         \Delta H^{°}_{c} = -3287.4 kJ
(3) C_{6}H_{12}\left(g\right)+9O_{2}\longrightarrow 6CO_{2\left(g\right) }+6H_{2}O (1)         \Delta H^{°}_{c} = -3949.2 kJ
(4) C\left(s\right)+O_{2} \left(g\right)\longrightarrow CO_{2} (g)         \Delta H^{°}_{c} = -393.12 kJ
(5) H_{2}\left(g\right)+\frac{1}{2} O_{2}\left(g\right)\longrightarrow H_{2}O (1)          \Delta H^{°}_{c} = -285.58 kJ

Note: unlike heats of formation, the standard state of water for heats of combustion is liquid. Standard pressure and temperature are the same 25°C, 1 atm.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Method 1
Using the more general equation 3.26
\Delta H^{°}_{r} =\sum{\Delta H^{°}_{⨍}} , products – \sum{\Delta H^{°}_{⨍}} reactants

the enthalpy of formation of C_{6}H_{6} and C_{6}H_{12} can be calculated, and from these values the heat of reaction (1).

From reaction (2)
\Delta H^{°}_{c}\left(C_{6}H_{6} \right) = 6× \Delta H^{°}_{c}\left(CO_{2} \right) + 3 × \Delta H^{°}_{c}\left(H_{2}O \right)\Delta H^{°}_{⨍}\left(C_{6}H_{6} \right)
3287.4 = 6(-393.12) + 3(-285.58) – \Delta H^{°}_{⨍}\left(C_{6}H_{6} \right)

 

\Delta H^{°}_{⨍}\left(C_{6}H_{6} \right) =-3287.4 – 3215.52 = \underline{\underline{71.88 kJ/mol} }

 

\Delta H^{°}_{c}\left(C_{6}H_{12} \right) =-3949.2 = 6(-393.12) + 6(-285.58)-\Delta H^{°}_{⨍}\left(C_{6}H_{12} \right)
\Delta H^{°}_{⨍}\left(C_{6}H_{12} \right) =3949.2 – 4072.28 = -\underline{\underline{123.06 kJ/mol} }

\Delta H^{°}_{r} = \Delta H^{°}_{⨍}\left(C_{6}H_{12} \right)\Delta H^{°}_{⨍}\left(C_{6}H_{6} \right)
\Delta H^{°}_{r} = (-123.06) – (71.88) = – \underline{\underline{195 kJ/mol} }

Note: enthalpy of formation of H_{2} is zero.

 

Method 2
Using equation (3.27)

\Delta H^{°}_{r} =\sum{\Delta H^{°}_{c}}, reactants – \sum{\Delta H^{°}_{c}}

\Delta H^{°}_{r}=(\Delta H^{°}_{c}\left(C_{6}H_{6} \right) ) + 3 × \Delta H^{°}_{c}\left((H_{2}) \right)\Delta H^{°}_{c}\left(C_{6}H_{12} \right)

= (-3287.4 + 3(-285.88)) – (-3949.2) = –\underline{\underline{196 kJ/mol} }
Heat of reaction – \Delta H^{°}_{r}= \underline{\underline{196 kJ/mol} }

Related Answered Questions