(a) Show that the quadrupole term in the multipole expansion can be written
V_{\text {quad }}( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}} \sum_{i, j=1}^{3} \hat{r}_{i} \hat{r}_{j} Q_{i j}
(in the notation of Eq. 1.31), where
\bar{A}_{i}=\sum_{j=1}^{3} R_{i j} A_{j} (1.31)
Q_{i j} \equiv \frac{1}{2} \int\left[3 r^{\prime} r_{j}^{\prime}-\left(r^{\prime}\right)^{2} \delta_{i j}\right] \rho\left( r ^{\prime}\right) d \tau^{\prime} .
Here
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
is the Kronecker delta, and Q_{i j} is the quadrupole moment of the charge distribution. Notice the hierarchy:
V_{ mon }=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} ; \quad V_{ dip }=\frac{1}{4 \pi \epsilon_{0}} \frac{\sum \hat{r}_{i} p_{i}}{r^{2}} ; \quad V_{\text {quad }}=\frac{1}{4 \pi \epsilon_{0}} \frac{\sum \hat{r}_{i} \hat{r}_{j} Q_{i j}}{r^{3}} ; \ldots
The monopole moment (Q) is a scalar, the dipole moment (p) is a vector, the quadrupole moment \left(Q_{i j}\right) is a second-rank tensor, and so on.
(b) Find all nine components of Q_{i j} for the configuration in Fig. 3.30 (assume the square has side a and lies in the xy plane, centered at the origin).
(c) Show that the quadrupole moment is independent of origin if the monopole and dipole moments both vanish. (This works all the way up the hierarchy—the lowest nonzero multipole moment is always independent of origin.)
(d) How would you define the octopole moment? Express the octopole term in the
multipole expansion in terms of the octopole moment.