Question 3.52: (a) Show that the quadrupole term in the multipole expansion...

(a) Show that the quadrupole term in the multipole expansion can be written

V_{\text {quad }}( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}} \sum_{i, j=1}^{3} \hat{r}_{i} \hat{r}_{j} Q_{i j}

(in the notation of Eq. 1.31), where

\bar{A}_{i}=\sum_{j=1}^{3} R_{i j} A_{j}                        (1.31)

Q_{i j} \equiv \frac{1}{2} \int\left[3 r^{\prime} r_{j}^{\prime}-\left(r^{\prime}\right)^{2} \delta_{i j}\right] \rho\left( r ^{\prime}\right) d \tau^{\prime} .

Here

\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}

is the Kronecker delta, and Q_{i j} is the quadrupole moment of the charge distribution. Notice the hierarchy:

V_{ mon }=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{r} ; \quad V_{ dip }=\frac{1}{4 \pi \epsilon_{0}} \frac{\sum \hat{r}_{i} p_{i}}{r^{2}} ; \quad V_{\text {quad }}=\frac{1}{4 \pi \epsilon_{0}} \frac{\sum \hat{r}_{i} \hat{r}_{j} Q_{i j}}{r^{3}} ; \ldots

The monopole moment (Q) is a scalar, the dipole moment (p) is a vector, the quadrupole moment \left(Q_{i j}\right) is a second-rank tensor, and so on.

(b) Find all nine components of Q_{i j} for the configuration in Fig. 3.30 (assume the square has side a and lies in the xy plane, centered at the origin).

(c) Show that the quadrupole moment is independent of origin if the monopole and dipole moments both vanish. (This works all the way up the hierarchy—the lowest nonzero multipole moment is always independent of origin.)

(d) How would you define the octopole moment? Express the octopole term in the
multipole expansion in terms of the octopole moment.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  \sum_{i, j=1}^{3} \hat{ r }_{i} \hat{ r }_{j} Q_{i j}=\frac{1}{2} \int\left\{3 \sum_{i=1}^{3} \hat{ r }_{i} r_{i}^{\prime} \sum_{j=1}^{3} \hat{ r }_{j} r_{j}^{\prime}-\left(r^{\prime}\right)^{2} \sum_{i, j} \hat{ r }_{i} \hat{ r }_{j} \delta_{i j}\right\} \rho d \tau^{\prime}

But \sum_{i=1}^{3} \hat{ r }_{i} r_{i}^{\prime}=\hat{ r } \cdot r ^{\prime}=r^{\prime} \cos \alpha=\sum_{j=1}^{3} \hat{ r }_{j} r_{j}^{\prime} ; \quad \sum_{i, j} \hat{ r }_{i} \hat{ r }_{j} \delta_{i j}=\sum \hat{ r }_{j} \hat{ r }_{j}=\hat{ r } \cdot \hat{ r }=1 .  So

V_{\text {quad }}=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}} \int \frac{1}{2}\left(3 r^{\prime 2} \cos ^{2} \alpha-r^{\prime 2}\right) \rho d \tau^{\prime} = the third term in Eq. 3.96.

V( r )=\frac{1}{4 \pi \epsilon_{0}}\left[\frac{1}{r} \int \rho\left( r ^{\prime}\right) d \tau^{\prime}+\frac{1}{r^{2}} \int r^{\prime} \cos \alpha \rho\left( r ^{\prime}\right) d \tau^{\prime}\right.\left.+\frac{1}{r^{3}} \int\left(r^{\prime}\right)^{2}\left(\frac{3}{2} \cos ^{2} \alpha-\frac{1}{2}\right) \rho\left( r ^{\prime}\right) d \tau^{\prime}+\ldots\right]        (3.96)

(b) Because  x^{2}=y^{2}=(a / 2)^{2} \text { for all four charges, } Q_{x x}=Q_{y y}=\frac{1}{2}\left[3(a / 2)^{2}-(\sqrt{2} a / 2)^{2}\right](q-q-q+q)= 0 .

Because z = 0 for all four charges, Q_{z z}=\frac{1}{2}\left[-(\sqrt{2} a / 2)^{2}\right](q-q-q+q)=0 \text { and } Q_{x z}=Q_{y z}=Q_{z x}=Q_{z y}=0 .

This leaves only

Q_{x y}=Q_{y x}=\frac{3}{2}\left[\left(\frac{a}{2}\right)\left(\frac{a}{2}\right) q+\left(\frac{a}{2}\right)\left(-\frac{a}{2}\right)(-q)+\left(-\frac{a}{2}\right)\left(\frac{a}{2}\right)(-q)+\left(-\frac{a}{2}\right)\left(-\frac{a}{2}\right) q\right]=\frac{3}{2} a^{2} q .

(c)

2 \bar{Q}_{i j}=\int\left[3\left(r_{i}-d_{i}\right)\left(r_{j}-d_{j}\right)-( r – d )^{2} \delta_{i j}\right] \rho d \tau  ( I ^{\prime}ll drop the primes, for simplicity.)

=\int\left[3 r_{i} r_{j}-r^{2} \delta_{i j}\right] \rho d \tau-3 d_{i} \int r_{j} \rho d \tau-3 d_{j} \int r_{i} \rho d \tau+3 d_{i} d_{j} \int \rho d \tau+2 d \cdot \int r \rho d \tau \delta_{i j}

 

-d^{2} \delta_{i j} \int \rho d \tau=Q_{i j}-3\left(d_{i} p_{j}+d_{j} p_{i}\right)+3 d_{i} d_{j} Q+2 \delta_{i j} d \cdot p -d^{2} \delta_{i j} Q .

So if p = 0 and Q = 0 then \bar{Q}_{i j}=Q_{i j} .   qed

(d) Eq. 3.95 with n = 3:

V( r )=\frac{1}{4 \pi \epsilon_{0}} \sum_{n=0}^{\infty} \frac{1}{r^{(n+1)}} \int\left(r^{\prime}\right)^{n} P_{n}(\cos \alpha) \rho\left( r ^{\prime}\right) d \tau^{\prime}                      (3.95)

V_{ oct }=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{4}} \int\left(r^{\prime}\right)^{3} P_{3}(\cos \alpha) \rho d \tau^{\prime} ; \quad P_{3}(\cos \theta)=\frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) .

V_{ oct }=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{4}} \sum_{i, j, k} \hat{ r }_{i} \hat{ r }_{j} \hat{ r }_{k} Q_{i j k} .

Define the “octopole moment” as

Q_{i j k} \equiv \frac{1}{2} \int\left[5 r_{i}^{\prime} r_{j}^{\prime} r_{k}^{\prime}-\left(r^{\prime}\right)^{2}\left(r_{i}^{\prime} \delta_{j k}+r_{j}^{\prime} \delta_{i k}+r_{k}^{\prime} \delta_{i j}\right)\right] \rho\left( r ^{\prime}\right) d \tau^{\prime} .

Related Answered Questions