Question 12.62: The parallel-link mechanism ABCD is used to transport a comp...

The parallel-link mechanism ABCD is used to transport a component I between manufacturing processes at stations E, F, and G by picking it up at a station when \theta =0 and depositing it at the next station when \theta ={ 180 }^{ \circ }. Knowing that member BC remains horizontal throughout its motion and that links AB and CD rotate at a constant rate in a vertical plane in such a way that \nu_{ B } = 2.2 \mathrm{\ ft}/\mathrm{s}, determine (a) the minimum value of the coefficient of static friction between the component and BC if the component is not to slide on BC while being transferred, (b) the values of \theta for which sliding is impending.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\begin{gathered}\overset{+}{→}\Sigma F_{x}=m a_{x}: \quad F=\frac{W}{g} \frac{\nu_{B}^{2}}{\rho} \cos \theta \\+\uparrow \Sigma F_{y}=m a_{y}: \quad N-W=-\frac{W}{g} \frac{\nu_{B}^{2}}{\rho} \sin \theta\end{gathered}

or \quad N=W\left\lgroup1-\frac{\nu_{B}^{2}}{g \rho} \sin \theta\right\rgroup

Now \quad F_{\max }=\mu_{s} N=\mu_{s} W\left\lgroup1-\frac{\nu_{B}^{2}}{g \rho} \sin \theta\right\rgroup

and for the component not to slide

F<F_{\max }

or\quad\frac{W}{g} \frac{\nu_{B}^{2}}{\rho} \cos \theta<\mu_{s} W\left\lgroup1-\frac{\nu_{B}^{2}}{g \rho} \sin \theta\right\rgroup

or \quad\mu_{s}>\frac{\cos \theta}{\frac{g \rho}{\nu_{B}^{2}}-\sin \theta}

We must determine the values of \theta which maximize the above expression. Thus

\frac{d}{d \theta}\left\lgroup\frac{\cos \theta}{\frac{g \rho}{\nu_{B}^{2}}-\sin \theta}\right\rgroup=\frac{-\sin \theta\left(\frac{g \rho}{\nu_{B}^{2}}-\sin \theta\right)-(\cos \theta)(-\cos \theta)}{\left(\frac{g \rho}{\nu_{B}^{2}}-\sin \theta\right)^{2}}=0

or \quad\sin \theta=\frac{\nu_{B}^{2}}{g \rho} \quad \text { for } \quad \mu_{s}=\left(\mu_{s}\right)_{\min }

Now \quad\sin \theta=\frac{(2.2 \mathrm{\ ft} / \mathrm{s})^{2}}{\left(32.2 \mathrm{\ ft} / \mathrm{s}^{2}\right)\left(\frac{10}{12} \mathrm{\ ft}\right)}=0.180373

or \quad\theta=10.3915^{\circ} \text { and } \theta=169.609^{\circ}

(a) From above,

\begin{aligned}\left(\mu_{s}\right)_{\min } & =\frac{\cos \theta}{\frac{g \rho}{\nu_{B}^{2}}-\sin \theta} \quad \text { where } \quad \sin \theta=\frac{\nu_{B}^{2}}{g \rho} \\\left(\mu_{s}\right)_{\min } & =\frac{\cos \theta}{\frac{1}{\sin \theta}-\sin \theta}=\frac{\cos \theta \sin \theta}{1-\sin ^{2} \theta}=\tan \theta \\& =\tan 10.3915^{\circ}\end{aligned}

or \quad\quad\quad\quad\quad\quad\left(\mu_{s}\right)_{\min }=0.1834\blacktriangleleft

(b) We have impending motion

to the left for \quad\quad\quad\quad\quad\quad\theta=10.39^{\circ}\blacktriangleleft

to the right for\quad\quad\quad\quad\quad\quad\theta=169.6^{\circ}\blacktriangleleft

12.62.

Related Answered Questions