(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real. Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.
(b) Do the same for the operator in Problem 3.6.
(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real. Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.
(b) Do the same for the operator in Problem 3.6.
(a) The eigenvalues (Eq. 3.29) are 0 , ±1, ±2 ,…. which are obviously real. For any two eigenfunctions, f=A_{q} e^{-i q \phi} and g=A_{q^{\prime}} e^{-i q^{\prime} \phi} (Eq. 3.28), we have
e^{-i q 2 \pi}=1 \quad \Rightarrow \quad q=0, \pm 1, \pm 2, \ldots (3.29).
f(\phi)=A e^{-i q \phi} (3.28).
\langle f \mid g\rangle=A_{q}^{*} A_{q^{\prime}} \int_{0}^{2 \pi} e^{i q \phi} e^{-i q^{\prime} \phi} d \phi=\left.A_{q}^{*} A_{q^{\prime}} \frac{e^{i\left(q-q^{\prime}\right) \phi}}{i\left(q-q^{\prime}\right)}\right|_{0} ^{2 \pi}=\frac{A_{q}^{*} A_{q^{\prime}}}{i\left(q-q^{\prime}\right)}\left[e^{i\left(q-q^{\prime}\right) 2 \pi}-1\right] .
But q and q′ are integers, so e^{i\left(q-q^{\prime}\right) 2 \pi}=1 , and hence \langle f \mid g\rangle=0 (provided q \neq q^{\prime} , so the denominator is nonzero).
(b) In Problem 3.6 the eigenvalues are q=-n^{2} with n = 0, 1, 2, …., which are obviously real.
For any two eigenfunctions, f=A_{q} e^{\pm i n \phi} and g=A_{q^{\prime}} e^{\pm i n^{\prime} \phi} , we have
\langle f \mid g\rangle=A_{q}^{*} A_{q^{\prime}} \int_{0}^{2 \pi} e^{\mp i n \phi} e^{\pm i n^{\prime} \phi} d \phi=\left.A_{q}^{*} A_{q^{\prime}} \frac{e^{\pm i\left(n^{\prime}-n\right) \phi}}{\pm i\left(n^{\prime}-n\right)}\right|_{0} ^{2 \pi}=\frac{A_{q}^{*} A_{q^{\prime}}}{\pm i\left(n^{\prime}-n\right)}\left[e^{\pm i\left(n^{\prime}-n\right) 2 \pi}-1\right]=0 .
(provided n \neq n^{\prime} ).