Question 3.8: (a) Check that the eigenvalues of the hermitian operator in ...

(a) Check that the eigenvalues of the hermitian operator in Example 3.1 are real. Show that the eigenfunctions (for distinct eigenvalues) are orthogonal.

(b) Do the same for the operator in Problem 3.6.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The eigenvalues (Eq. 3.29) are 0 , ±1, ±2 ,…. which are obviously real. For any two eigenfunctions, f=A_{q} e^{-i q \phi} and g=A_{q^{\prime}} e^{-i q^{\prime} \phi} (Eq. 3.28), we have

e^{-i q 2 \pi}=1 \quad \Rightarrow \quad q=0, \pm 1, \pm 2, \ldots     (3.29).

f(\phi)=A e^{-i q \phi}       (3.28).

\langle f \mid g\rangle=A_{q}^{*} A_{q^{\prime}} \int_{0}^{2 \pi} e^{i q \phi} e^{-i q^{\prime} \phi} d \phi=\left.A_{q}^{*} A_{q^{\prime}} \frac{e^{i\left(q-q^{\prime}\right) \phi}}{i\left(q-q^{\prime}\right)}\right|_{0} ^{2 \pi}=\frac{A_{q}^{*} A_{q^{\prime}}}{i\left(q-q^{\prime}\right)}\left[e^{i\left(q-q^{\prime}\right) 2 \pi}-1\right] .

But q and q′ are integers, so e^{i\left(q-q^{\prime}\right) 2 \pi}=1 , and hence \langle f \mid g\rangle=0 (provided q \neq q^{\prime} , so the denominator is nonzero).

(b) In Problem 3.6 the eigenvalues are q=-n^{2} with n = 0, 1, 2, …., which are obviously real.

For any two eigenfunctions, f=A_{q} e^{\pm i n \phi} and g=A_{q^{\prime}} e^{\pm i n^{\prime} \phi} , we have

\langle f \mid g\rangle=A_{q}^{*} A_{q^{\prime}} \int_{0}^{2 \pi} e^{\mp i n \phi} e^{\pm i n^{\prime} \phi} d \phi=\left.A_{q}^{*} A_{q^{\prime}} \frac{e^{\pm i\left(n^{\prime}-n\right) \phi}}{\pm i\left(n^{\prime}-n\right)}\right|_{0} ^{2 \pi}=\frac{A_{q}^{*} A_{q^{\prime}}}{\pm i\left(n^{\prime}-n\right)}\left[e^{\pm i\left(n^{\prime}-n\right) 2 \pi}-1\right]=0 .

(provided n \neq n^{\prime} ).

Related Answered Questions