Question 3.58: Find the charge density σ(θ) on the surface of a sphere (rad...

Find the charge density σ(θ) on the surface of a sphere (radius R) that produces the same electric field, for points exterior to the sphere, as a charge q at the point a < R on the z axis. \left[\text { Answer: } \frac{q}{4 \pi R}\left(R^{2}-a^{2}\right)\left(R^{2}+a^{2}-2 R a \cos \theta\right)^{-3 / 2}\right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Potential of q:  V_{q}( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{ᴫ}   , where  ᴫ^{2}=a^{2}+r^{2}-2 a r \cos \theta .

Equation 3.94,

\frac{1}{ᴫ}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{r^{\prime}}{r}\right)^{n} P_{n}(\cos \alpha)                      (3.94)

with r^{\prime} \rightarrow a \text { and } \alpha \rightarrow \theta: \quad \frac{1}{ᴫ}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{a}{r}\right)^{n} P_{n}(\cos \theta) . So 

V_{q}(r, \theta)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{a}{r}\right)^{n} P_{n}(\cos \theta) .

Meanwhile, the potential of σ is (Eq. 3.79)

V_{\sigma}(r, \theta)=\sum_{l=0}^{\infty} \frac{B_{l}}{r^{l+1}} P_{l}(\cos \theta) .

Comparing the two \left(V_{q}=V_{\sigma}\right) \text { we see that } B_{l}=\left(q / 4 \pi \epsilon_{0}\right) a^{l}, \text { and hence (Eq. 3.81) } A_{l}=\left(q / 4 \pi \epsilon_{0}\right) a^{l} / R^{2 l+1} . Then (Eq. 3.83)

B_{l}=A_{l} R^{2 l+1}             (3.81)

\sum_{l=0}^{\infty}(2 l+1) A_{l} R^{l-1} P_{l}(\cos \theta)=\frac{1}{\epsilon_{0}} \sigma_{0}(\theta)                   (3.83)

\sigma(\theta)=\frac{q}{4 \pi R^{2}} \sum_{l=0}^{\infty}(2 l+1)\left(\frac{a}{R}\right)^{l} P_{l}(\cos \theta)=\frac{q}{4 \pi R^{2}}\left[2 \sum_{l=0}^{\infty} l\left(\frac{a}{R}\right)^{l} P_{l}(\cos \theta)+\sum_{l=0}^{\infty}\left(\frac{a}{R}\right)^{l} P_{l}(\cos \theta)\right].

Now (second line above, with R)

\frac{1}{\sqrt{a^{2}+R^{2}-2 a R \cos \theta}}=\frac{1}{R} \sum_{l=0}^{\infty}\left(\frac{a}{R}\right)^{l} P_{l}(\cos \theta) .

Di↵erentiating with respect to a:

\frac{d}{d a}\left(\frac{1}{\sqrt{a^{2}+R^{2}-2 a R \cos \theta}}\right)=-\frac{(a-R \cos \theta)}{\left(a^{2}+R^{2}-2 a R \cos \theta\right)^{3 / 2}}=\frac{1}{a R} \sum_{l=0}^{\infty} l\left(\frac{a}{R}\right)^{l} P_{l}(\cos \theta) .

Thus

\sigma(\theta)=\frac{q}{4 \pi R^{2}}\left[-2 a R \frac{(a-R \cos \theta)}{\left(a^{2}+R^{2}-2 a R \cos \theta\right)^{3 / 2}}+\frac{R}{\left(a^{2}+R^{2}-2 a R \cos \theta\right)^{1 / 2}}\right]

 

=\frac{q}{4 \pi R} \frac{\left[-2 a(a-R \cos \theta)+\left(a^{2}+R^{2}-2 a R \cos \theta\right)\right]}{\left(a^{2}+R^{2}-2 a R \cos \theta\right)^{3 / 2}}=\frac{q}{4 \pi R} \frac{\left(R^{2}-a^{2}\right)}{\left(a^{2}+R^{2}-2 a R \cos \theta\right)^{3 / 2}} .

Related Answered Questions