Question 4.2: According to quantum mechanics, the electron cloud for a hyd...

According to quantum mechanics, the electron cloud for a hydrogen atom in the ground state has a charge density

\rho(r)=\frac{q}{\pi a^{3}} e^{-2 r / a} ,

where q is the charge of the electron and a is the Bohr radius. Find the atomic polarizability of such an atom. [Hint: First calculate the electric field of the electron cloud E_{e}(r) ; then expand the exponential, assuming r \ll a \cdot^{1}

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First find the field, at radius r, using Gauss’ law:  \int E \cdot d a =\frac{1}{\epsilon_{0}} Q_{ enc }, \text { or } E=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} Q_{\text {enc }} .

Q_{ enc }=\int_{0}^{r} \rho d \tau=\frac{4 \pi q}{\pi a^{3}} \int_{0}^{r} e^{-2 \bar{r} / a} \bar{r}^{2} d \bar{r}=\left.\frac{4 q}{a^{3}}\left[-\frac{a}{2} e^{-2 \bar{r} / a}\left(\bar{r}^{2}+a \bar{r}+\frac{a^{2}}{2}\right)\right]\right|_{0} ^{r}

 

=-\frac{2 q}{a^{2}}\left[e^{-2 r / a}\left(r^{2}+a r+\frac{a^{2}}{2}\right)-\frac{a^{2}}{2}\right]=q\left[1-e^{-2 r / a}\left(1+2 \frac{r}{a}+2 \frac{r^{2}}{a^{2}}\right)\right] .

\left[\text { Note: } Q_{\text {enc }}(r \rightarrow \infty)=q .\right] So the field of the electron cloud is E_{ e }=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}}\left[1-e^{-2 r / a}\left(1+2 \frac{r}{a}+2 \frac{r^{2}}{a^{2}}\right)\right] . The proton will be shifted from r = 0 to the point d where E_{ e }=E (the external field): 

E=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{d^{2}}\left[1-e^{-2 d / a}\left(1+2 \frac{d}{a}+2 \frac{d^{2}}{a^{2}}\right)\right] .

Expanding in powers of (d/a):

e^{-2 d / a}=1-\left(\frac{2 d}{a}\right)+\frac{1}{2}\left(\frac{2 d}{a}\right)^{2}-\frac{1}{3 !}\left(\frac{2 d}{a}\right)^{3}+\cdots=1-2 \frac{d}{a}+2\left(\frac{d}{a}\right)^{2}-\frac{4}{3}\left(\frac{d}{a}\right)^{3}+\cdots

 

1-e^{-2 d / a}\left(1+2 \frac{d}{a}+2 \frac{d^{2}}{a^{2}}\right)=1-\left(1-2 \frac{d}{a}+2\left(\frac{d}{a}\right)^{2}-\frac{4}{3}\left(\frac{d}{a}\right)^{3}+\cdots\right)\left(1+2 \frac{d}{a}+2 \frac{d^{2}}{a^{2}}\right)

 

=1-1-2 \frac{d}{a}-2 \frac{d^{2}}{d^{2}}+2 \frac{d}{a}+4 \frac{d^{2}}{d^{2}}+4 \frac{d^{3}}{d^{3}}-2 \frac{d^{2}}{d^{2}}-4 \frac{d_{1}^{3}}{a^{3}}+\frac{4}{3} \frac{d^{3}}{a^{3}}+\cdots

 

=\frac{4}{3}\left(\frac{d}{a}\right)^{3}+ higher order terms.

E=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{d^{2}}\left(\frac{4}{3} \frac{d^{3}}{a^{3}}\right)=\frac{1}{4 \pi \epsilon_{0}} \frac{4}{3 a^{3}}(q d)=\frac{1}{3 \pi \epsilon_{0} a^{3}} p . \quad \alpha=3 \pi \epsilon_{0} a^{3} .

[Not so di↵erent from the uniform sphere model of Ex. 4.1 (see Eq. 4.2).

\alpha=4 \pi \epsilon_{0} a^{3}=3 \epsilon_{0} v           (4.2) 

Note that this result predicts  \frac{1}{4 \pi \epsilon_{0}} \alpha=\frac{3}{4} a^{3}=\frac{3}{4}\left(0.5 \times 10^{-10}\right)^{3}=0.09 \times 10^{-30} m ^{3} , compared with an experimental value (Table 4.1) of 0.66 \times 10^{-30} m ^{3} . Ironically the “classical” formula (Eq. 4.2) is slightly closer to the empirical value.] 

He Li Be C Ne Na Ar K Cs
0.205 24.3 5.60 1.67 0.396 24.1 1.64 43.4 59.4

Related Answered Questions