Question 11.151: Determine the radius of curvature of the path described by t...

Determine the radius of curvature of the path described by the particle of Problem 11.95 when t = 0.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have

\mathbf{v}=\frac{d \mathbf{r}}{d t}=  R\left(\cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right) \mathbf{i}+c \mathbf{j}+R\left(\sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right) \mathbf{k}

and

\begin{aligned}\mathbf{a}=\frac{d \mathbf{v}}{d t}= & R\left(-\omega_{n} \sin \omega_{n} t-\omega_{n} \sin \omega_{n} t-\omega_{n}^{2} t \cos \omega_{n} t\right) \mathbf{i} \\& +R\left(\omega_{n} \cos \omega_{n} t+\omega_{n} \cos \omega_{n} t-\omega_{n}^{2} t \sin \omega_{n} t\right) \mathbf{k}\end{aligned}

or

\mathbf{a}  =\omega_{n} R\left[-\left(2 \sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right) \mathbf{i}+\left(2 \cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right) \mathbf{k}\right]

Now

\begin{aligned}\nu^{2} & =R^{2}\left(\cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right)^{2}+c^{2}+R^{2}\left(\sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right)^{2} \\& =R^{2}\left(1+\omega_{n}^{2} t^{2}\right)+c^{2}\end{aligned}

Then \quad\nu=\left[R^{2}\left(1+\omega_{n}^{2} t^{2}\right)+c^{2}\right]^{1 / 2}

and \quad\frac{d \nu}{d t}=\frac{R^{2} \omega_{n}^{2} t}{\left[R^{2}\left(1+\omega_{n}^{2} t^{2}\right)+c^{2}\right]^{1 / 2}}

Now \quad a^{2}=a_{t}^{2}+a_{n}^{2}=\left\lgroup\frac{d \nu}{d t}\right\rgroup^{2}+\left\lgroup\frac{\nu^{2}}{\rho}\right\rgroup^{2}

At t = 0:

\begin{aligned}\frac{d \nu}{d t} & =0 \\\mathbf{a} & =\omega_{n} R(2 \mathbf{k}) \quad \text { or } \quad a=2 \omega_{n} R \\\nu^{2} & =R^{2}+c^{2}\end{aligned}

Then, with \quad \frac{d \nu}{d t}=0

we have \quad a=\frac{\nu^{2}}{\rho}

or 2\omega_{n}R={\frac{R^2+c^2}{\rho}}\quad\quad\quad\quad\quad\quad\quad\quad\rho=\frac{R^{2}+c^{2}}{2 \omega_{n} R}\blacktriangleleft

Related Answered Questions