Question 3.26: Consider a three-dimensional vector space spanned by an orth...

Consider a three-dimensional vector space spanned by an orthonormal basis |1\rangle,|2\rangle,|3\rangle . \text { Kets }|\alpha\rangle \text { and }|\beta\rangle  are given by

|\alpha\rangle=i|1\rangle-2|2\rangle-i|3\rangle, \quad|\beta\rangle=i|1\rangle+2|3\rangle .

(a) Construct \langle\alpha| and \langleβ| (in terms of the dual basis \langle 1|,\langle 2|,\langle 3| .

(b) Find \langle\alpha \mid \beta\rangle and \langle\beta \mid \alpha\rangle , and confirm that \langle\beta \mid \alpha\rangle=\langle\alpha \mid \beta\rangle^{*} .

(c) Find all nine matrix elements of the operator \hat{A} \equiv|\alpha\rangle\langle\beta| , in this basis, and construct the matrix A. Is it hermitian?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) \langle\alpha|=-i\langle 1|-2\langle 2|+i\langle 3| ; \quad\langle\beta|=-i\langle 1|+2\langle 3|  .

(b) \langle\alpha \mid \beta\rangle=(-i\langle 1|-2\langle 2|+i\langle 3|)(i|1\rangle+2|3\rangle)=(-i)(i)\langle 1 \mid 1\rangle+(i)(2)\langle 3 \mid 3\rangle=1+2 i .

\langle\beta \mid \alpha\rangle=\left(-i\left\langle 1|+2\langle 3|)(i|1\rangle-2|2\rangle-i|3\rangle)=(-i)(i)\langle 1 \mid 1\rangle+(2)(-i)\langle 3 \mid 3\rangle=1-2 i=\langle\alpha \mid \beta\rangle^{*}\right.\right..

(c)

A_{11}=\langle 1 \mid \alpha\rangle\langle\beta \mid 1\rangle=(i)(-i)=1 ; A_{12}=\langle 1 \mid \alpha\rangle\langle\beta \mid 2\rangle=(i)(0)=0 ; A_{13}=\langle 1 \mid \alpha\rangle\langle\beta \mid 3\rangle=(i)(2)=2 i ;

A_{21}=\langle 2 \mid \alpha\rangle\langle\beta \mid 1\rangle=(-2)(-i)=2 i ; A_{22}=\langle 2 \mid \alpha\rangle\langle\beta \mid 2\rangle=(-2)(0)=0 ; A_{23}=\langle 2 \mid \alpha\rangle\langle\beta \mid 3\rangle=(-2)(2)=-4 ;

A_{31}=\langle 3 \mid \alpha\rangle\langle\beta \mid 1\rangle=(-i)(-i)=-1 ; A_{32}=\langle 3 \mid \alpha\rangle\langle\beta \mid 2\rangle=(-i)(0)=0 ; A_{33}=\langle 3 \mid \alpha\rangle\langle\beta \mid 3\rangle=(-i)(2)=-2 i .

A =\left(\begin{array}{ccc} 1 & 0 & 2 i \\ 2 i & 0 & -4 \\ -1 & 0 & -2 i \end{array}\right) .  No, it’s not hermitian.

Related Answered Questions