Consider a three-dimensional vector space spanned by an orthonormal basis |1\rangle,|2\rangle,|3\rangle . \text { Kets }|\alpha\rangle \text { and }|\beta\rangle are given by
|\alpha\rangle=i|1\rangle-2|2\rangle-i|3\rangle, \quad|\beta\rangle=i|1\rangle+2|3\rangle .
(a) Construct \langle\alpha| and \langleβ| (in terms of the dual basis \langle 1|,\langle 2|,\langle 3| .
(b) Find \langle\alpha \mid \beta\rangle and \langle\beta \mid \alpha\rangle , and confirm that \langle\beta \mid \alpha\rangle=\langle\alpha \mid \beta\rangle^{*} .
(c) Find all nine matrix elements of the operator \hat{A} \equiv|\alpha\rangle\langle\beta| , in this basis, and construct the matrix A. Is it hermitian?