Question 3.31: Legendre polynomials. Use the Gram–Schmidt procedure (Proble...

Legendre polynomials. Use the Gram–Schmidt procedure (Problem A.4) to orthonormalize the  functions 1 , x , x² , and x³ on the interval -1 ≤ x ≤ 1 . You may recognize the results—they are (apart from normalization)39 Legendre polynomials (Problem 2.64 and Table 4.1).

Table 4.1: The first few Legendre polynomials, P_{\ell}(x) : (a) functional form, (b) graph
Legendre polynomials. Use the Gram–Schmidt procedure (Problem A.4) to orthonormalize the  functions 1 , x , x^2 , and x^3 on the interval -1 ≤ x ≤ 1 . You may recognize the results—they are (apart from normalization)39 Legendre polynomials (Problem 2.64 and Table 4.1). P_{0}=1
P_{1}=x
P_{2}=\frac{1}{2}\left(3 x^{2}-1\right)
P_{3}=\frac{1}{2}\left(5 x^{3}-3 x\right)
P_{4}=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)
P_{5}=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right)
(b) (a)
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\left|e_{1}\right\rangle=1 ;\left\langle e_{1} \mid e_{1}\right\rangle=\int_{-1}^{1} 1 d x=2 . So \left|e_{1}^{\prime}\right\rangle=\frac{1}{\sqrt{2}} .

\left|e_{2}\right\rangle=x ;\left\langle e_{1}^{\prime} \mid e_{2}\right\rangle=\frac{1}{\sqrt{2}} \int_{-1}^{1} x d x=0 ;\left\langle e_{2} \mid e_{2}\right\rangle=\int_{-1}^{1} x^{2} d x=\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3} .    So \left|e_{2}^{\prime}\right\rangle=\sqrt{\frac{3}{2}} x .

\left|e_{3}\right\rangle=x^{2} ;\left\langle e_{1}^{\prime} \mid e_{3}\right\rangle=\frac{1}{\sqrt{2}} \int_{-1}^{1} x^{2} d x=\frac{1}{\sqrt{2}} \frac{2}{3} ;\left\langle e_{2}^{\prime} \mid e_{3}\right\rangle=\sqrt{\frac{2}{3}} \int_{-1}^{1} x^{3} d x=0 .

So (Problem A.4): \left|e_{3}^{\prime \prime}\right\rangle=\left|e_{3}\right\rangle-\frac{1}{\sqrt{2}} \frac{2}{3}\left|e_{1}^{\prime}\right\rangle=x^{2}-\frac{1}{3} .

\left\langle e_{3}^{\prime \prime} \mid e_{3}^{\prime \prime}\right\rangle=\int_{-1}^{1}\left(x^{2}-\frac{1}{3}\right)^{2} d x=\left.\left(\frac{x^{5}}{5}-\frac{2}{3} \cdot \frac{x^{3}}{3}+\frac{x}{9}\right)\right|_{-1} ^{1}=\frac{2}{5}-\frac{4}{9}+\frac{2}{9}=\frac{8}{45} .   So

\left|e_{3}^{\prime}\right\rangle=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)=\mid \sqrt{\frac{5}{2}}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right) .

\left|e_{4}\right\rangle=x^{3} . \quad\left\langle e_{1}^{\prime} \mid e_{4}\right\rangle=\frac{1}{\sqrt{2}} \int_{-1}^{1} x^{3} d x=0 ; \quad\left\langle e_{2}^{\prime} \mid e_{4}\right\rangle=\sqrt{\frac{3}{2}} \int_{-1}^{1} x^{4} d x=\sqrt{\frac{3}{2}} \cdot \frac{2}{5} ;

\left\langle e_{3}^{\prime} \mid e_{4}\right\rangle=\sqrt{\frac{5}{2}} \int_{-1}^{1}\left(\frac{3}{2} x^{5}-\frac{1}{2} x^{3}\right) d x=0 . \quad\left|e_{4}^{\prime \prime}\right\rangle=\left|e_{4}\right\rangle-\left\langle e_{2}^{\prime} \mid e_{4}\right\rangle\left|e_{2}^{\prime}\right\rangle=x^{3}-\sqrt{\frac{3}{2}} \frac{2}{5} \sqrt{\frac{3}{2}} x=x^{3}-\frac{3}{5} x ;

\left\langle e_{4}^{\prime \prime} \mid e_{4}^{\prime \prime}\right\rangle=\int_{-1}^{1}\left(x^{3}-\frac{3}{5} x\right)^{2} d x=\left.\left[\frac{x^{7}}{7}-\frac{2 \cdot 3}{5} \frac{x^{5}}{5}+\frac{9}{25} \frac{x^{3}}{3}\right]\right|_{-1} ^{1}=\frac{2}{7}-\frac{12}{25}+\frac{18}{75}=\frac{8}{7 \cdot 25} ;

\left|e_{4}^{\prime}\right\rangle=\frac{5}{2} \sqrt{\frac{7}{2}}\left(x^{3}-\frac{3}{5} x\right)=\sqrt{\frac{7}{2}}\left(\frac{5}{2} x^{3}-\frac{3}{2} x\right) .

Related Answered Questions