Question 3.38: In an interesting version of the energy-time uncertainty pri...

In an interesting version of the energy-time uncertainty principle Δt = τ/π, where τ is the time it takes Ψ(x,t). to evolve into a state orthogonal to Ψ(x,0). Test this out, using a wave function that is a linear combination of two (orthonormal) stationary states of some (arbitrary) potential: \Psi(x, 0)=(1 / \sqrt{2})\left[\psi_{1}(x)+\psi_{2}(x)\right] .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\Psi(x, t)=\frac{1}{\sqrt{2}}\left(\psi_{1} e^{-i E_{1} t / \hbar}+\psi_{2} e^{-i E_{2} t / \hbar}\right) ; \quad\langle\Psi(x, t) \mid \Psi(x, 0)\rangle=0 \Rightarrow \frac{1}{2}\left(e^{i E_{1} t / \hbar}\left\langle\psi_{1} \mid \psi_{1}\right\rangle+e^{i E_{1} t / \hbar}\left\langle\psi_{1} \mid \psi_{2}\right\rangle+e^{i E_{2} t / \hbar}\left\langle\psi_{2} \mid \psi_{1}\right\rangle+e^{i E_{2} t / \hbar}\left\langle\psi_{2} \mid \psi_{2}\right\rangle\right)

=\frac{1}{2}\left(e^{i E_{1} t / \hbar}+e^{i E_{2} t / \hbar}\right)=0, \text { or } e^{i E_{2} t / \hbar}=-e^{i E_{1} t / \hbar}, \text { so } e^{i\left(E_{2}-E_{1}\right) t / \hbar}=-1=e^{i \pi} .

Thus \left(E_{2}-E_{1}\right) t / \hbar=\pi (orthogonality also at 3π; 5π; etc., but this is the first occurrence).

\therefore \Delta t \equiv \frac{t}{\pi}=\frac{\hbar}{E_{2}-E_{1}} . \quad \text { But } \Delta E=\sigma_{H}=\frac{1}{2}\left(E_{2}-E_{1}\right) . (Problem 3.20). So \Delta t \Delta E=\frac{\hbar}{2} .

Related Answered Questions