Question 3.39: Find the matrix elements 〈n|x|n′〉 and 〈n|x|n′〉 in the (o...

Find the matrix elements \left\langle n|x| n^{\prime}\right\rangle \text { and }\left\langle n|p| n^{\prime}\right\rangle  in the (orthonormal) basis of stationary states for the harmonic oscillator (Equation 2.68). You already calculated the “diagonal” element \left(n=n^{\prime}\right)  in Problem 2.12; use the same technique for the general case. Construct the corresponding (infinite) matrices, X and P. Show that (1 / 2 m) P ^{2}+\left(m \omega^{2} / 2\right) X ^{2}= H is diagonal, in this basis. Are its diagonal elements what you would expect?

\psi_{n}=\frac{1}{\sqrt{n !}}\left(\hat{a}_{+}\right)^{n} \psi_{0}       (2.68).

Partial answer:

\left\langle n|x| n^{\prime}\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n^{\prime} \delta}_{n, n^{\prime}-1}+\sqrt{n} \delta_{n^{\prime}, n-1}\right)         (3.114).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation 2.70:

x=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}_{+}+\hat{a}_{-}\right) ; \quad \hat{p}=i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}_{+}-\hat{a}_{-}\right)     (2.70).

x=\sqrt{\frac{\hbar}{2 m \omega}}\left(a_{+}+a_{-}\right), \quad p=i \sqrt{\frac{\hbar m \omega}{2}}\left(a_{+}-a_{-}\right) ; Eq. 2.67 :

\hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}          (2.67).

\left\{\begin{array}{l}a_{+}|n\rangle=\sqrt{n+1}|n+1\rangle \\ a_{-}|n\rangle=\sqrt{n}|n-1\rangle \end{array}\right..

\left\langle n|x| n^{\prime}\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left\langle n\left|\left(a_{+}+a_{-}\right)\right| n^{\prime}\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left[\sqrt{n^{\prime}+1}\left\langle n \mid n^{\prime}+1\right\rangle+\sqrt{n^{\prime}}\left\langle n \mid n^{\prime}-1\right\rangle\right]

=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n^{\prime}+1} \delta_{n, n^{\prime}+1}+\sqrt{n^{\prime}} \delta_{n, n^{\prime}-1}\right) = \sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n} \delta_{n^{\prime}, n-1}+\sqrt{n^{\prime}} \delta_{n, n^{\prime}-1}\right) .

\left\langle n|p| n^{\prime}\right\rangle = i \sqrt{\frac{m \hbar \omega}{2}}\left(\sqrt{n} \delta_{n^{\prime}, n-1}-\sqrt{n^{\prime}} \delta_{n, n^{\prime}-1}\right) .

Noting that n and n′ run from zero to infinity, the matrices are:

X=\sqrt{\frac{\hbar}{2 m \omega}}\left(\begin{array}{cccccc} 0 & \sqrt{1} & 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & \sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 & \sqrt{4} & 0 \\ 0 & 0 & 0 & \sqrt{4} & 0 & \sqrt{5} \\ & & & \cdots & & \end{array}\right)    ; P=i \sqrt{\frac{m \hbar \omega}{2}}\left(\begin{array}{cccccc} 0 & -\sqrt{1} & 0 & 0 & 0 & 0 \\ \sqrt{1} & 0 & -\sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & -\sqrt{3} & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 & -\sqrt{4} & 0 \\ 0 & 0 & 0 & \sqrt{4} & -\sqrt{5} \\ & & & \cdots & & \end{array}\right) .

Squaring these matrices:

X ^{2}=\frac{\hbar}{2 m \omega}\left(\begin{array}{cccccc} 1 & 0 & \sqrt{1 \cdot 2} & 0 & 0 & 0 \\ 0 & 3 & 0 & \sqrt{2 \cdot 3} & 0 & 0 \\ \sqrt{1 \cdot 2} & 0 & 5 & 0 & \sqrt{3 \cdot 4} & 0 \\ 0 & \sqrt{2 \cdot 3} & 0 & 7 & 0 & \sqrt{4 \cdot 5} \\ & \cdots & & \cdots \end{array}\right) .

P ^{2}=-\frac{m \hbar \omega}{2}\left(\begin{array}{cccccc} -1 & 0 & \sqrt{1 \cdot 2} & 0 & 0 & 0 \\ 0 & -3 & 0 & \sqrt{2 \cdot 3} & 0 & 0 \\ \sqrt{1 \cdot 2} & 0 & -5 & 0 & \sqrt{3 \cdot 4} & 0 \\ 0 & \sqrt{2 \cdot 3} & 0 & -7 & 0 & \sqrt{4 \cdot 5} \\ & & & \cdots & & \end{array}\right) .

So the Hamiltonian, in matrix form, is

H =\frac{1}{2 m} P ^{2}+\frac{m \omega^{2}}{2} X ^{2} =-\frac{\hbar \omega}{4}\left(\begin{array}{cccccc} -1 & 0 & \sqrt{1 \cdot 2} & 0 & 0 & 0 \\ 0 & -3 & 0 & \sqrt{2 \cdot 3} & 0 & 0 \\ \sqrt{1 \cdot 2} & 0 & -5 & 0 & \sqrt{3 \cdot 4} & 0 \\ 0 & \sqrt{2 \cdot 3} & 0 & -7 & 0 & \sqrt{4 \cdot 5} \\ & & & \cdots & & \end{array}\right)

+\frac{\hbar \omega}{4}\left(\begin{array}{cccccc} 1 & 0 & \sqrt{1 \cdot 2} & 0 & 0 & 0 \\ 0 & 3 & 0 & \sqrt{2 \cdot 3} & 0 & 0 \\ \sqrt{1 \cdot 2} & 0 & 5 & 0 & \sqrt{3 \cdot 4} & 0 \\ 0 & \sqrt{2 \cdot 3} & 0 & 7 & 0 & \sqrt{4 \cdot 5} \\ & & & \cdots & & \end{array}\right) = \frac{\hbar \omega}{2}\left(\begin{array}{llllllll} 1 & 0 & 0 & 0 & \\ 0 & 3 & 0 & 0 & \\ 0 & 0 & 5 & 0 & \\ 0 & 0 & 0 & 7 & \\ & & & & \ddots \end{array}\right) .

It’s plainly diagonal, and the nonzero elements are H_{n n}=\left(n+\frac{1}{2}\right) \hbar \omega , as they should be.

Related Answered Questions