Question 3.40: The most general wave function of a particle in the simple h...

The most general wave function of a particle in the simple harmonic oscillator potential is

\Psi(x, t)=\sum_{n} c_{n} \psi_{n}(x) e^{-i E_{n} t / \hbar} .

Show that the expectation value of position is

\langle x\rangle=C \cos (\omega t-\phi) ,

where the real constants C and ϕ are given by

C e^{-i \phi}=\left(\sqrt{\frac{2 \hbar}{m \omega}}\right) \sum_{n=0}^{\infty} \sqrt{n+1} c_{n+1}^{*} c_{n} .

Thus the expectation value of position for a particle in the harmonic oscillator oscillates at the classical frequency ω (as you would expect from Ehrenfest’s theorem; see problem 3.19(b)). Hint: Use Equation 3.114. As an example, find C and ϕ for the wave function in Problem 2.40.

\left\langle n|x| n^{\prime}\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n^{\prime} \delta}_{n, n^{\prime}-1}+\sqrt{n} \delta_{n^{\prime}, n-1}\right)       (3.114).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Equation 3.114,

\left\langle n|x| n^{\prime}\right\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\sqrt{n^{\prime} \delta}_{n, n^{\prime}-1}+\sqrt{n} \delta_{n^{\prime}, n-1}\right)       (3.114).

\langle x\rangle=\int\left(\sum_{n} c_{n} \psi_{n} e^{-i E_{n} t / \hbar}\right)^{*} x\left(\sum_{n^{\prime}} c_{n^{\prime}} \psi_{n^{\prime}} e^{-i E_{n^{\prime}} t / \hbar}\right) d x=\sum_{n} \sum_{n^{\prime}} c_{n}^{*} c_{n^{\prime}} e^{i\left(E_{n}-E_{n^{\prime}}\right) t / \hbar}\left\langle n|x| n^{\prime}\right\rangle .

=\sqrt{\frac{\hbar}{2 m \omega}} \sum_{n} \sum_{n^{\prime}} c_{n}^{*} c_{n^{\prime}} e^{i\left(E_{n}-E_{n^{\prime}}\right) t / \hbar}\left(\sqrt{n^{\prime}} \delta_{n, n^{\prime}-1}+\sqrt{n} \delta_{n^{\prime}, n-1}\right) .

=\sqrt{\frac{\hbar}{2 m \omega}} \sum_{n}\left[\sqrt{n+1} c_{n}^{*} c_{n+1} e^{i\left(E_{n}-E_{n+1}\right) t / \hbar}+\sqrt{n} c_{n}^{*} c_{n-1} e^{i\left(E_{n}-E_{n-1}\right) t / \hbar}\right] .

=\sqrt{\frac{\hbar}{2 m \omega}}\left[\sum_{n=0}^{\infty} \sqrt{n+1} c_{n}^{*} c_{n+1} e^{-i \omega t}+\sum_{n=0}^{\infty} \sqrt{n} c_{n}^{*} c_{n-1} e^{i \omega t}\right] .

In the last step I used

E_{n}-E_{n-1}=\left(n+\frac{1}{2}\right) \hbar \omega-\left(n-\frac{1}{2}\right) \hbar \omega=\hbar \omega, \quad E_{n}-E_{n+1}=\left(n+\frac{1}{2}\right) \hbar \omega-\left(n+\frac{3}{2}\right) \hbar \omega=-\hbar \omega .

Noting that \sqrt{n} kills the n = 0 term in the second sum, let n → n + 1 and run it from 0 to ∞:

\langle x\rangle=\sqrt{\frac{\hbar}{2 m \omega}} \sum_{n=0}^{\infty} \sqrt{n+1}\left[c_{n}^{*} c_{n+1} e^{-i \omega t}+c_{n+1}^{*} c_{n} e^{i \omega t}\right] .

=\left(\sqrt{\frac{\hbar}{2 m \omega}} \sum_{n=0}^{\infty} \sqrt{n+1} c_{n}^{*} c_{n+1}\right) e^{-i \omega t}+\left(\sqrt{\frac{\hbar}{2 m \omega}} \sum_{n=0}^{\infty} \sqrt{n+1} c_{n} c_{n+1}^{*}\right) e^{i \omega t} .

=\frac{1}{2}\left(C e^{i \phi}\right) e^{-i \omega t}+\frac{1}{2}\left(C e^{-i \phi}\right) e^{i \omega t}=C \cos (\omega t-\phi) .

In the case of Problem 2.40, c_{0}=3 / 5, c_{1}=-2 \sqrt{2} / 5, c_{2}=2 \sqrt{2} / 5 , (and all the rest are zero) so

C e^{-i \phi}=\sqrt{\frac{2 \hbar}{m \omega}}\left(c_{1}^{*} c_{0}+\sqrt{2} c_{2}^{*} c_{1}\right)=\sqrt{\frac{2 \hbar}{m \omega}}\left(\frac{(-2 \sqrt{2})}{5} \frac{3}{5}+\sqrt{2} \frac{2 \sqrt{2}}{5} \frac{(-2 \sqrt{2})}{5}\right)=-\frac{28}{25} \sqrt{\frac{\hbar}{m \omega}} .

C=\frac{28}{25} \sqrt{\frac{\hbar}{m \omega}}, \quad \phi=\pi .

Related Answered Questions