Question 3.41: A harmonic oscillator is in a state such that a measurement ...

A harmonic oscillator is in a state such that a measurement of the energy would yield either (1 / 2) \hbar \omega or (3 / 2) \hbar \omega  , with equal probability. What is the largest possible value of 〈p〉 in such a state? If it assumes this maximal value at time t=0 , what is Ψ(x,t) ?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Evidently \Psi(x, t)=c_{0} \psi_{0}(x) e^{-i E_{0} t / \hbar}+c_{1} \psi_{1}(x) e^{-i E_{1} t / \hbar}, \text { with }\left|c_{0}\right|^{2}=\left|c_{1}\right|^{2}=1 / 2, \text { so } c_{0}=e^{i \theta_{0}} / \sqrt{2}, c_{1}=e^{i \theta_{1}} / \sqrt{2} , for some real \theta_{0}, \theta_{1}.

\langle p\rangle=\left|c_{0}\right|^{2}\left\langle\psi_{0} \mid p \psi_{0}\right\rangle+\left|c_{1}\right|^{2}\left\langle\psi_{1} \mid p \psi_{1}\right\rangle+c_{0}^{*} c_{1} e^{i\left(E_{0}-E_{1}\right) t / \hbar}\left\langle\psi_{0} \mid p \psi_{1}\right\rangle+c_{1}^{*} c_{0} e^{i\left(E_{1}-E_{0}\right) t / \hbar}\left\langle\psi_{1} \mid p \psi_{0}\right\rangle .

But E_{1}-E_{0}=\left(\frac{3}{2} \hbar \omega\right)-\left(\frac{1}{2} \hbar \omega\right)=\hbar \omega , and (Problem 2.11) \left\langle\psi_{0} \mid p \psi_{0}\right\rangle=\left\langle\psi_{1} \mid p \psi_{1}\right\rangle=0 while (Eqs. 2.70 and 2.67).

x=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}_{+}+\hat{a}_{-}\right) ; \quad \hat{p}=i \sqrt{\frac{\hbar m \omega}{2}}\left(\hat{a}_{+}-\hat{a}_{-}\right)       (2.70).

\hat{a}_{+} \psi_{n}=\sqrt{n+1} \psi_{n+1}, \quad \hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}       (2.67).

\left\langle\psi_{0} \mid p \psi_{1}\right\rangle=i \sqrt{\frac{\hbar m \omega}{2}}\left\langle\psi_{0} \mid\left(a_{+}-a_{-}\right) \psi_{1}\right\rangle=i \sqrt{\frac{\hbar m \omega}{2}}\left[\left\langle\psi_{0} \mid \sqrt{2} \psi_{2}\right\rangle-\left\langle\psi_{0} \mid \sqrt{1} \psi_{0}\right\rangle\right]=-i \sqrt{\frac{\hbar m \omega}{2}} ;\left\langle\psi_{1} \mid p \psi_{0}\right\rangle=i \sqrt{\frac{\hbar m \omega}{2}} .

\langle p\rangle=\frac{1}{\sqrt{2}} e^{-i \theta_{0}} \frac{1}{\sqrt{2}} e^{i \theta_{1}} e^{-i \omega t}\left(-i \sqrt{\frac{\hbar m \omega}{2}}\right)+\frac{1}{\sqrt{2}} e^{-i \theta_{1}} \frac{1}{\sqrt{2}} e^{i \theta_{0}} e^{i \omega t}\left(i \sqrt{\frac{\hbar m \omega}{2}}\right) .

=\frac{i}{2} \sqrt{\frac{\hbar m \omega}{2}}\left[-e^{-i\left(\omega t-\theta_{1}+\theta_{0}\right)}+e^{i\left(\omega t-\theta_{1}+\theta_{0}\right)}\right]=-\sqrt{\frac{\hbar m \omega}{2}} \sin \left(\omega t+\theta_{0}-\theta_{1}\right) .

The maximum is \sqrt{\hbar m \omega / 2} it occurs at t = 0 \Leftrightarrow \sin \left(\theta_{0}-\theta_{1}\right)=-1, \text { or } \theta_{1}=\theta_{0}+\pi / 2 . We might as well pick \theta_{0}=0, \theta_{1}=\pi / 2 ; then

\Psi(x, t)=\frac{1}{\sqrt{2}}\left[\psi_{0} e^{-i \omega t / 2}+\psi_{1} e^{i \pi / 2} e^{-3 i \omega t / 2}\right]= \frac{1}{\sqrt{2}} e^{-i \omega t / 2}\left(\psi_{0}+i \psi_{1} e^{-i \omega t}\right) .

Related Answered Questions