Question 4.29: (a) For the configuration in Prob. 4.5, calculate the force ...

(a) For the configuration in Prob. 4.5, calculate the force on P _{2} due to P _{1}, and the force on P _{1} due to P _{2}. Are the answers consistent with Newton’s third law?

(b) Find the total torque on P _{2} with respect to the center of P _{1}, and compare it withthe torque on P _{1} about that same point. [Hint: combine your answer to (a) withthe result of Prob. 4.5.]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Eq. 4.5 \Rightarrow F _{2}=\left( p _{2} \cdot \nabla \right) E _{1}=p_{2} \frac{\partial}{\partial y}\left( E _{1}\right) ;

F =( p \cdot \nabla ) E                      (4.5)

Eq. 3.103  \Rightarrow E _{1}=\frac{p_{1}}{4 \pi \epsilon_{0} r^{3}} \hat{ \theta }=-\frac{p_{1}}{4 \pi \epsilon_{0} y^{3}} \hat{ z } . Therefore

E _{ dip }(r, \theta)=\frac{p}{4 \pi \epsilon_{0} r^{3}}(2 \cos \theta \hat{ r }+\sin \theta \hat{ \theta })                        (3.103)

F _{2}=-\frac{p_{1} p_{2}}{4 \pi \epsilon_{0}}\left[\frac{d}{d y}\left(\frac{1}{y^{3}}\right)\right] \hat{ z }=\frac{3 p_{1} p_{2}}{4 \pi \epsilon_{0} y^{4}} \hat{ z }, \text { or } F _{2}=\frac{3 p_{1} p_{2}}{4 \pi \epsilon_{0} r^{4}} \hat{ z } (upward).

To calculate F _{1}, put p _{2} at the origin, pointing in the z direction; then p _{1} is at -r \hat{ z }, \text { and it points in the }-\hat{ y } \text { direction. So } F _{1}=\left( p _{1} \cdot \nabla \right) E _{2}=-\left.p_{1} \frac{\partial E _{2}}{\partial y}\right|_{x=y=0, z=-r} ; we need E _{2} as a function of x, y, and z.

From Eq. 3.104: E _{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}\left[\frac{3\left( p _{2} \cdot r \right) r }{r^{2}}- p _{2}\right], \text { where } r =x \hat{ x }+y \hat{ y }+z \hat{ z }, p _{2}=p_{2} \hat{ z }, \text { and hence } p _{2} \cdot r =p_{2} z .

E _{ dip }( r )=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3( p \cdot \hat{ r }) \hat{ r }- p ]                          (3.104)

E _{2}=\frac{p_{2}}{4 \pi \epsilon_{0}}\left[\frac{3 z(x \hat{ x }+y \hat{ y }+z \hat{ z })-\left(x^{2}+y^{2}+z^{2}\right) \hat{ z }}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right]=\frac{p_{2}}{4 \pi \epsilon_{0}}\left[\frac{3 x z \hat{ x }+3 y z \hat{ y }-\left(x^{2}+y^{2}-2 z^{2}\right) \hat{ z }}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right]

 

\frac{\partial E _{2}}{\partial y}=\frac{p_{2}}{4 \pi \epsilon_{0}}\left\{-\frac{5}{2} \frac{2 y}{r^{7}}\left[3 x z \hat{ x }+3 y z \hat{ y }-\left(x^{2}+y^{2}-2 z^{2}\right) \hat{ z }\right]+\frac{1}{r^{5}}(3 z \hat{ y }-2 y \hat{ z })\right\} .

 

\left.\frac{\partial E _{2}}{\partial y}\right|_{(0,0)}=\frac{p_{2}}{4 \pi \epsilon_{0}} \frac{3 z}{r^{5}} \hat{ y } ; \quad F _{1}=-p_{1}\left(\frac{p_{2}}{4 \pi \epsilon_{0}} \frac{-3 r}{r^{5}} \hat{ y }\right)=\frac{3 p_{1} p_{2}}{4 \pi \epsilon_{0} r^{4}} \hat{ y } .

But \hat{ y } in these coordinates corresponds to  -\hat{ z } in the original system, so these results are consistent with Newton’s third law: F _{1}=- F _{2} .

(b) From the remark following Eq. 4.5,  N _{2}=\left( p _{2} \times E _{1}\right)+\left( r \times F _{2}\right) . The first term was calculated in Prob. 4.5; the second we get from (a), using r =r \hat{ y } ;

p _{2} \times E _{1}=\frac{p_{1} p_{2}}{4 \pi \epsilon_{0} r^{3}}(-\hat{ x }) ; \quad r \times F _{2}=(r \hat{ y }) \times\left(\frac{3 p_{1} p_{2}}{4 \pi \epsilon_{0} r^{4}} \hat{ z }\right)=\frac{3 p_{1} p_{2}}{4 \pi \epsilon_{0} r^{3}} \hat{ x } ; \text { so } \quad N _{2}=\frac{2 p_{1} p_{2}}{4 \pi \epsilon_{0} r^{3}} \hat{ x }.

This is equal and opposite to the torque on p _{1} due to p _{2}, with respect to the center of p _{1} (see Prob. 4.5).

4.29A
4.29B

Related Answered Questions