Question 11.168: After taking off, a helicopter climbs in a straight line at ...

After taking off, a helicopter climbs in a straight line at a constant angle \beta. Its flight is tracked by radar from Point A. Determine the speed of the helicopter in terms of d, \beta, \theta and \dot { \theta }.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

From the diagram

\frac{r}{\sin \left(180^{\circ}-\beta\right)}=\frac{d}{\sin (\beta-\theta)}

or \quad d \sin \beta=r(\sin \beta \cos \theta-\cos \beta \sin \theta)

or \quad r=d \frac{\tan \beta}{\tan \beta \cos \theta-\sin \theta}

Then 

\begin{aligned}\dot{r} & =d \tan \beta \frac{-(-\tan \beta \sin \theta-\cos \theta)}{(\tan \beta \cos \theta-\sin \theta)^{2}} \dot{\theta} \\& =d \dot{\theta} \tan \beta \frac{\tan \beta \sin \theta+\cos \theta}{(\tan \beta \cos \theta-\sin \theta)^{2}}\end{aligned}

From the diagram

\nu_{r}=\nu \cos (\beta-\theta) \quad \text { where } \quad \nu_{r}=\dot{r}

Then 

\begin{aligned}d \dot{\theta} \tan \beta \frac{\tan \beta \sin \theta+\cos \theta}{(\tan \beta \cos \theta-\sin \theta)^{2}} & =\nu(\cos \beta \cos \theta+\sin \beta \sin \theta) \\& =\nu \cos \beta(\tan \beta \sin \theta+\cos \theta)\end{aligned}

or \quad\quad\quad\quad\nu=\frac{d \dot{\theta} \tan \beta \sec \beta}{(\tan \beta \cos \theta-\sin \theta)^{2}}\blacktriangleleft

Alternative solution.

We have \quad \nu^{2}=\nu_{r}^{2}+\nu_{\theta}^{2}=(\dot{r})^{2}+(r \dot{\theta})^{2}

Using the expressions for r and \dot{r} from above

\begin{aligned}\nu & =\left[d \dot{\theta} \tan \beta \frac{\tan \beta \sin \theta+\cos \theta}{(\tan \beta \cos \theta-\sin \theta)^{2}}\right]^{2} \\\text{or}\quad\quad\nu & =\pm \frac{d \dot{\theta} \tan \beta}{(\tan \beta \cos \theta-\sin \theta)}\left[\frac{(\tan \beta \sin \theta+\cos \theta)^{2}}{(\tan \beta \cos \theta-\sin \theta)^{2}}+1\right]^{1 / 2} \\& =\pm \frac{d \dot{\theta} \tan \beta}{(\tan \beta \cos \theta-\sin \theta)}\left[\frac{\tan ^{2} \beta+1}{(\tan \beta \cos \theta-\sin \theta)^{2}}\right]^{1 / 2}\end{aligned}

Note that as \theta increases, the helicopter moves in the indicated direction. Thus, the positive root is chosen.

\nu=\frac{d \dot{\theta} \tan \beta \sec \beta}{(\tan \beta \cos \theta-\sin \theta)^{2}}\blacktriangleleft

11.168.

Related Answered Questions