Question 11.177: The motion of a particle on the surface of a right...

The motion of a particle on the surface of a right circular cylinder is defined by the relations R=A, \theta =2\pi t and z=Bsin2\pi nt where A and Bare constants and n is an integer. Determine the magnitudes of the velocity and acceleration of the particle at any time t.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\begin{array}{lll} R=A & \theta=2 \pi t & z=B \sin 2 \pi n t \\ \dot{R}=0 & \dot{\theta}=2 \pi & \dot{z}=2 \pi n B \cos 2 \pi n t \\ \ddot{R}=0 & \ddot{\theta}=0 & \ddot{z}=-4 \pi^2 n^2 B \sin 2 \pi n t \end{array}

Velocity (Eq. 11.49)

\begin{aligned} &\begin{aligned} & \mathbf{v}=\dot{R} \mathbf{e}_R+R \dot{\theta} \mathbf{e}_\theta+\dot{z} \mathbf{k} \\ & \mathbf{v}=\quad+A(2 \pi) \mathbf{e}_\theta+2 \pi n B \cos 2 \pi n t \mathbf{k} \end{aligned}\\ &v=2 \pi \sqrt{A^2+n^2 B^2 \cos ^2 2 \pi n t} \end{aligned}

Acceleration (Eq. 11.50)

\begin{aligned} &\begin{aligned} & \mathbf{a}=\left(\ddot{R}-R \dot{\theta}^2\right) \mathbf{e}_R+(R \ddot{\theta}+2 \dot{R} \dot{\theta}) \mathbf{e}_\theta+\ddot{z} \mathbf{k} \\ & \mathbf{a}=-4 \pi^2 A \mathbf{e}_k-4 \pi^2 n^2 B \sin 2 \pi n t \mathbf{k} \end{aligned}\\ &a=4 \pi^2 \sqrt{A^2+n^4 B^2 \sin ^2 2 \pi n t} \end{aligned}

Related Answered Questions