Question 11.180: For the conic helix of Problem 11.95, determine the angle th...

For the conic helix of Problem 11.95, determine the angle that the osculating plane forms with the y axis.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

First note that the vectors v and a lie in the osculating plane.

Now 

\mathbf{r}=  \left(R t \cos \omega_{n} t\right) \mathbf{i}+c t \mathbf{j}+\left(R t \sin \omega_{n} t\right) \mathbf{k}

Then

\mathbf{v}=  \frac{d r}{d t}=R\left(\cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right) \mathbf{i}+c \mathbf{j}+R\left(\sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right) \mathbf{k}

and 

\begin{aligned}\mathbf{a}= & \frac{d \nu}{d t} \\= & R\left(-\omega_{n} \sin \omega_{n} t-\omega_{n} \sin \omega_{n} t-\omega_{n}^{2} t \cos \omega_{n} t\right) \mathbf{i} \\& +R\left(\omega_{n} \cos \omega_{n} t+\omega_{n} \cos \omega_{n} t-\omega_{n}^{2} t \sin \omega_{n} t\right) \mathbf{k} \\= & \omega_{n} R\left[-\left(2 \sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right) \mathbf{i}+\left(2 \cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right) \mathbf{k}\right]\end{aligned}

It then follows that the vector (\mathbf{v} \times \mathbf{a}) is perpendicular to the osculating plane.

(\mathbf{v}\times\mathbf{a})=\omega_{n}R{\left|\begin{array}{l l l}{\quad\quad\quad\quad\quad\mathbf{i}}&{\mathbf{j}}&{\quad\quad\quad\quad\quad\mathbf{k}}\\ {R(\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)}&{c}&{R(\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)}\\ {-(2\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)}&{0}&{(2\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)}\end{array}\right|}

=\omega_{n}R\{c(2\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t){\bf i}+R[-(\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)(2\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)

-(\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)(2\cos\omega_{n}t-\omega_{n}t\sin\omega_{n}t)]\mathbf{j}+c(2\sin\omega_{n}t+\omega_{n}t\cos\omega_{n}t)\mathbf{k}

=\omega_{n}R\biggl[c(2\cos{\omega_{n}t}-\omega_{n}t\sin{\omega_{n}t}){\mathbf{i}-{R}}\biggr(2+\omega_{n}^{2}t^{2}\biggr)\mathbf{j}+c(2\sin{\omega_{n}t}+\omega_{n}t\cos{\omega_{n}t}){\mathbf{k}}\biggr]

The angle \alpha formed by the vector (\mathbf{v} \times \mathbf{a}) and the y axis is found from

\cos \alpha=\frac{(\mathbf{v} \times \mathbf{a}) \cdot \mathbf{j}}{|(\mathbf{v} \times \mathbf{a}) \| \mathbf{j}|}

Where

\begin{aligned}&\quad\quad\quad\quad\quad\quad |\mathbf{j}|=1\\& (\mathbf{v} \times \mathbf{a}) \cdot \mathbf{j}=-\omega_{n} R^{2}\left(2+\omega_{n}^{2} t^{2}\right)\\& \quad\quad |(\mathbf{v} \times \mathbf{a})|=\omega_{n} R\left[c^{2}\left(2 \cos \omega_{n} t-\omega_{n} t \sin \omega_{n} t\right)^{2}+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right.\\& \quad\quad\quad\quad\left.+c^{2}\left(2 \sin \omega_{n} t+\omega_{n} t \cos \omega_{n} t\right)^{2}\right]^{1 / 2}\\& \quad\quad =\omega_{n} R\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}\end{aligned}

Then

\begin{aligned}\cos \alpha & =\frac{-\omega_{n} R^{2}\left(2+\omega_{n}^{2} t^{2}\right)}{\omega_{n} R\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}} \\& =\frac{-R\left(2+\omega_{n}^{2} t^{2}\right)}{\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}}\end{aligned}

The angle \beta that the osculating plane forms with y axis (see the above diagram) is equal to

\beta=\alpha-90^{\circ}

Then \quad\cos \alpha=\cos \left(\beta+90^{\circ}\right)=-\sin \beta

-\sin \beta=\frac{-R\left(2+\omega_{n}^{2} t^{2}\right)}{\left[c^{2}\left(4+\omega_{n}^{2} t^{2}\right)+R^{2}\left(2+\omega_{n}^{2} t^{2}\right)^{2}\right]^{1 / 2}}

Then \quad\tan \beta=\frac{R\left(2+\omega_{n}^{2} t^{2}\right)}{c \sqrt{4+\omega_{n}^{2} t^{2}}}

or \quad\quad\quad\quad\quad\quad\beta=\tan ^{-1}\left[\frac{R\left(2+\omega_{n}^{2} t^{2}\right)}{c \sqrt{4+\omega_{n}^{2} t^{2}}}\right]\blacktriangleleft

11.180.
11.180

Related Answered Questions