Question 11.193: A telemetry system is used to quantify kinematic values of a...

A telemetry system is used to quantify kinematic values of a ski jumper immediately before she leaves the ramp. According to the system r=500 \mathrm{\ ft}, \dot { r } =-105 \mathrm{\ ft}/{ s }, \ddot { r } =-10 \mathrm{\ ft}/{ s }^{ 2 }, \theta ={ 25 }^{ \circ}, \dot { \theta } =0.07 \mathrm{\ rad}/{ s },\ddot { \theta } =0.06 \mathrm{\ rad}/{ s }^{ 2 }. Determine (a) the velocity of the skier immediately before she leaves the jump, (b) the acceleration of the skier at this instant, (c) the distance of the jump d neglecting lift and air resistance.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Velocity of the skier. \quad(r=500 \mathrm{\ ft},\theta=25^{\circ})

\mathbf{v}=\nu_{r} \mathbf{e}_{r}+\nu_{\theta} \mathbf{e}_{\theta}=\dot{r} \mathbf{e}_{r}+r \dot{\theta} \mathbf{e}_{\theta}

=(-105 \mathrm{\ ft} / \mathrm{s}) \mathbf{e}_{r}+(500 \mathrm{\ ft})(0.07 \mathrm{\ rad} / \mathrm{s}) \mathbf{e}_{\theta}

\mathbf{v}=(-105 \mathrm{\ ft} / \mathrm{s}) \mathbf{e}_{r}+(35 \mathrm{\ ft} / \mathrm{s}) \mathbf{e}_{\theta}\blacktriangleleft

Direction of velocity:

\begin{aligned}\mathbf{v} & =\left(-105 \cos 25^{\circ}-35 \cos 65^{\circ}\right) \mathbf{i}+\left(35 \sin 65^{\circ}-105 \sin 25^{\circ}\right) \mathbf{j} \\& =(-109.95 \mathrm{\ ft} / \mathrm{s}) \mathbf{i}+(-12.654 \mathrm{\ ft} / \mathrm{s}) \mathbf{j} \\\tan \alpha & =\frac{\nu_{y}}{\nu_{x}}=\frac{-12.654}{-109.95} \quad \alpha=6.565^{\circ} \\\nu & =\sqrt{(105)^{2}+(35)^{2}}=110.68 \mathrm{\ ft} / \mathrm{s} \\&\quad\quad\quad\quad\quad\quad\nu=110.7 \mathrm{\ ft} / \mathrm{s}  ⦫ 6.57^{\circ}\blacktriangleleft\end{aligned}

(b) Acceleration of the skier.

\begin{aligned}\mathbf{a} =a_{r} \mathbf{e}_{r}+a_{\theta} \mathbf{e}_{\theta}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \mathbf{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \mathbf{e}_{\theta} \\a_{r} =-10-(500)(0.07)^{2}=-12.45 \mathrm{\ ft} / \mathrm{s}^{2} \\a_{\theta} =(500)(0.06)+(2)(-105)(0.07)=15.30 \mathrm{\ ft} / \mathrm{s}^{2} \\ & \mathbf{a}=\left(-12.45 \mathrm{\ ft} / \mathrm{s}^{2}\right) \mathbf{e}_{r}+\left(15.30 \mathrm{~ft} / \mathrm{s}^{2}\right) \mathbf{e}_{\theta}\blacktriangleleft \\ =\left(-17.750 \mathrm{\ ft} / \mathrm{s}^{2}\right) \mathbf{i}+\left(8.6049 \mathrm{\ ft} / \mathrm{s}^{2}\right) \mathbf{j} \\ \mathbf{a} =(-12.45)\left(\mathbf{i} \cos 25^{\circ}+\mathbf{j} \sin 25^{\circ}\right)+(15.30)\left(-\mathbf{i} \cos 65^{\circ}+\mathbf{j} \sin 65^{\circ}\right) \\ \tan \beta =\frac{a_{y}}{a_{x}}=\frac{8.6049}{-17.750} \quad \beta=-25.9^{\circ} \\a =\sqrt{(12.45)^{2}+(15.30)^{2}}=19.725 \mathrm{\ ft} / \mathrm{s}^{2} \\& a=19.73 \mathrm{\ ft} / \mathrm{s}^{2} \ ⦫25.9^{\circ}\blacktriangleleft\end{aligned}

(c)Distance of the jump d.

Projectile motion. Place the origin of the xy-coordinate system at the end of the ramp with the x-coordinate horizontal and positive to the left and the y-coordinate vertical and positive downward.

Horizontal motion: (Uniform motion)

\begin{aligned}x_{0} & =0 \\\dot{x}_{0} & =109.95 \mathrm{\ ft} / \mathrm{s} \quad(\text { from Part } a) \\x & =x_{0}+\dot{x}_{0} t=109.95 t\end{aligned}

Vertical motion: (Uniformly accelerated motion)

\begin{aligned}y_{0} & =0 \\\dot{y}_{0} & =12.654 \mathrm{\ ft} / \mathrm{s} \quad \quad \text { (from Part } a) \\\ddot{y} & =32.2 \mathrm{\ ft} / \mathrm{s}^{2} \\y & =y_{0}+\dot{y}_{0} t+\frac{1}{2} \ddot{y} t^{2}=12.654 t-16.1 t^{2}\end{aligned}

At the landing point,

\begin{aligned}& x=d \cos 30^{\circ} \quad\quad \text{(1)}\\& y=10+d \sin 30^{\circ} \quad \text { or } \quad y-10=d \sin 30^{\circ}\quad\quad \text{(2)}\end{aligned}

Multiply Eq. (1) by \sin 30^{\circ} and Eq. (2) by \cos 30^{\circ} and subtract

\begin{aligned}& x \sin 30^{\circ}-(y-10) \cos 30^{\circ}=0 \\&(109.95 t) \sin 30^{\circ}-\left(12.654 t+16.1 t^{2}-10\right) \cos 30^{\circ}=0 \\&-13.943 t^{2}+44.016 t+8.6603=0 \\& t=-0.1858 \mathrm{~s} \text { and } 3.3427 \mathrm{~s}\end{aligned}

Reject the negative root.

\begin{aligned}& x=(109.95 \mathrm{\ ft} / \mathrm{s})(3.3427 \mathrm{~s})=367.53 \mathrm{\ ft} \\& d=\frac{x}{\cos 30^{\circ}}\quad\quad\quad\quad d=424\mathrm{\ ft}\blacktriangleleft\end{aligned}

11.193.

Related Answered Questions