Question 12.30: The coefficients of friction between blocks A and C and the ...

The coefficients of friction between blocks A and C and the horizontal surfaces are { \mu }_{ s }=0.24 and { \mu }_{ k }=0.20. Knowing that { m }_{ A }=5 \ kg,{ m }_{ B }=10 \ kg, and { m }_{ C }=10 \ kg, determine (a) the tension in the cord, (b) the acceleration of each block.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We first check that static equilibrium is not maintained:

\begin{aligned}\left(F_{A}\right)_{m}+\left(F_{C}\right)_{m} & =\mu_{s}\left(m_{A}+m_{C}\right) g \\& =0.24(5+10) g \\& =3.6 g\end{aligned}

Since W_{B}=m_{B} g=10 \mathrm{~g}>3.6 \mathrm{~g}, equilibrium is not maintained.

Block A: \quad \Sigma F_{y}: \quad N_{A}=m_{A} g

F_{A}=\mu_{k} N_{A}=0.2 m_{A} g

\overset{+}{\longrightarrow } \Sigma F_{\lambda}=m_{A} a_{A}: \quad T-0.2 m_{A} g=m_{A} a_{A}   (1)

Block C: \quad \Sigma F_{y}: \quad N_{C}=m_{C} g

F_{C}=\mu_{k} N_{C}=0.2 m_{C} g

\overset{+}{\longleftarrow } \Sigma F_{x}=m_{C} a_{C}: T-0.2 m_{C} g=m_{C} a_{C}   (2)

Block B: \quad+\downarrow \Sigma F_{y}=m_{B} a_{B}

m_{B} g-2 T=m_{B} a_{B}    (3)

From kinematics: \quad a_{B}=\frac{1}{2}\left(a_{A}+a_{C}\right)    (4)

(a) Tension in cord. Given data: m_{A}=5 \mathrm{~kg}

m_{B}=m_{C}=10 \mathrm{~kg}

Eq. (1): T-0.2(5) g=5 a_{A} \quad a_{A}=0.2 T-0.2 g    (5)

Eq. (2): T-0.2(10) g=10 a_{C} \quad a_{C}=0.1 T-0.2 g    (6)

Eq. (3): 10 g-2 T=10 a_{B} \quad a_{B}=g-0.2 T    (7)

Substitute into (4):

\begin{aligned}g-0.2 T & =\frac{1}{2}(0.2 T-0.2 g+0.1 T-0.2 g) \\1.2 g & =0.35 T \quad T=\frac{24}{7} g=\frac{24}{7}\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\end{aligned}

T=33.6 \mathrm{~N}\blacktriangleleft

(b) Substitute for T into (5), (7), and (6):

\begin{array}{lr}a_{A}=0.2\left\lgroup\frac{24}{7} g\right\rgroup-0.2 g=0.4857\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathbf{a}_{A}=4.76 \mathrm{~m} / \mathrm{s}^{2} \longrightarrow\blacktriangleleft \\a_{B}=g-0.2\left\lgroup\frac{24}{7} g\right\rgroup=0.3143\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathbf{a}_{B}=3.08 \mathrm{~m} / \mathrm{s}^{2}\downarrow \blacktriangleleft \\a_{C}=0.1\left\lgroup\frac{24}{7} g\right\rgroup-0.2 g=0.14286\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) & \mathbf{a}_{C}=1.401 \mathrm{~m} / \mathrm{s}^{2}\longleftarrow \blacktriangleleft\end{array}

12.30.

Related Answered Questions