Question 3.49: (a) Write down the time-dependent “Schrödinger equation” in ...

(a) Write down the time-dependent “Schrödinger equation” in momentum space, for a free particle, and solve it. Answer:

\exp \left(-i p^{2} t / 2 m \hbar\right) \Phi(p, 0) .

(b) Find Φ(p,0) or the traveling gaussian wave packet (Problem 2.42), and construct Φ (p,t) for this case. Also construct |Φ(p,t)|², and note that it is independent of time.

(c) Calculate 〈p〉 and 〈p²〉 by evaluating the appropriate integrals involving Φ, and compare your answers to Problem 2.42.

(d) Show that \langle H\rangle=\langle p\rangle^{2} / 2 m+\langle H\rangle_{0} (where the subscript 0 denotes the stationary gaussian), and comment on this result.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) For the free particle, V (x) = 0, so the time-dependent Schrödinger equation reads

i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}} . \quad \Psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{i p x / \hbar} \Phi(p, t) d p \Rightarrow

\frac{\partial \Psi}{\partial t}=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{i p x / \hbar} \frac{\partial \Phi}{\partial t} d p, \quad \frac{\partial^{2} \Psi}{\partial x^{2}}=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty}\left(-\frac{p^{2}}{\hbar^{2}}\right) e^{i p x / \hbar} \Phi d p .    So

\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{i p x / \hbar}\left[i \hbar \frac{\partial \Phi}{\partial t}\right] d p=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} e^{i p x / \hbar}\left[\frac{p^{2}}{2 m} \Phi\right] d p .

But two functions with the same Fourier transform are equal (as you can easily prove using Plancherel’s theorem), so

i \hbar \frac{\partial \Phi}{\partial t}=\frac{p^{2}}{2 m} \Phi .

\frac{1}{\Phi} d \Phi=-\frac{i p^{2}}{2 m \hbar} d t \quad \Rightarrow \Phi(p, t)=e^{-i p^{2} t / 2 m \hbar} \Phi(p, 0) .

(b)

\Psi(x, 0)=A e^{-a x^{2}} e^{i l x}, \quad A=\left(\frac{2 a}{\pi}\right)^{1 / 4} .    (Problem 2.42(a)).

\Phi(p, 0)=\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{2 a}{\pi}\right)^{1 / 4} \int_{-\infty}^{\infty} e^{-i p x / \hbar} e^{-a x^{2}} e^{i l x} d x=\frac{1}{\left(2 \pi a \hbar^{2}\right)^{1 / 4}} e^{-(l-p / \hbar)^{2} / 4 a} .    (Problem 2.42(b)).

\Phi(p, t)=\frac{1}{\left(2 \pi a \hbar^{2}\right)^{1 / 4}} e^{-(l-p / \hbar)^{2} / 4 a} e^{-i p^{2} t / 2 m \hbar} ; \quad|\Phi(p, t)|^{2}=\frac{1}{\sqrt{2 \pi a} \hbar} e^{-(l-p / \hbar)^{2} / 2 a} .

(c)

\langle p\rangle=\int_{-\infty}^{\infty} p|\Phi(p, t)|^{2} d p=\frac{1}{\sqrt{2 \pi a} \hbar} \int_{-\infty}^{\infty} p e^{-(l-p / \hbar)^{2} / 2 a} d p \text { [Let } y \equiv(p / \hbar)-l, \text { so } p=\hbar(y+l) \text { and } d p=\hbar d y \text {.] }

=\frac{\hbar}{\sqrt{2 \pi a}} \int_{-\infty}^{\infty}(y+l) e^{-y^{2} / 2 a} d y     [but the first term is odd]

=\frac{2 \hbar l}{\sqrt{2 \pi a}} \int_{0}^{\infty} e^{-y^{2} / 2 a} d y=\frac{2 \hbar l}{\sqrt{2 \pi a}} \sqrt{\frac{\pi a}{2}}=\hbar l       [as in Problem 2.42(d)].

\left\langle p^{2}\right\rangle=\int_{-\infty}^{\infty} p^{2}|\Phi(p, t)|^{2} d p=\frac{1}{\sqrt{2 \pi a} \hbar} \int_{-\infty}^{\infty} p^{2} e^{-(l-p / \hbar)^{2} / 2 a} d p=\frac{\hbar^{2}}{\sqrt{2 \pi a}} \int_{-\infty}^{\infty}\left(y^{2}+2 y l+l^{2}\right) e^{-y^{2} / 2 a} d y .

=\frac{2 \hbar^{2}}{\sqrt{2 \pi a}}\left[\int_{0}^{\infty} y^{2} e^{-y^{2} / 2 a} d y+l^{2} \int_{0}^{\infty} e^{-y^{2} / 2 a} d y\right]

=\frac{2 \hbar^{2}}{\sqrt{2 \pi a}}\left[2 \sqrt{\pi}\left(\sqrt{\frac{a}{2}}\right)^{3}+l^{2} \sqrt{\frac{\pi a}{2}}\right]=\left(a+l^{2}\right) \hbar^{2} .      [as in Problem 2.42(d)].

(d) H=\frac{p^{2}}{2 m} ; \quad\langle H\rangle=\frac{1}{2 m}\left\langle p^{2}\right\rangle=\frac{\hbar^{2}}{2 m}\left(l^{2}+a\right)=\frac{1}{2 m}\langle p\rangle^{2}+\frac{\hbar^{2} a}{2 m} . \quad \operatorname{But}\langle H\rangle_{0}=\frac{1}{2 m}\left\langle p^{2}\right\rangle_{0}=\frac{\hbar^{2} a}{2 m}   (Problem 2.21(d)).

So \langle H\rangle=\frac{1}{2 m}\langle p\rangle^{2}+\langle H\rangle_{0} . QED Comment: The energy of the traveling gaussian is the energy of the same gaussian at rest, plus the kinetic energy \left(\langle p\rangle^{2} / 2 m\right) associated with the motion of the wave packet as a whole.

Related Answered Questions