Question 4.38: Prove the following uniqueness theorem: A volume ν contains ...

Prove the following uniqueness theorem: A volume \nu contains a specified free charge distribution, and various pieces of linear dielectric material, with the susceptibility of each one given. If the potential is specified on the boundaries S of \nu (\nu = 0 at infinity would be suitable) then the potential throughout \nu is uniquely determined. [Hint: Integrate \left.\nabla \cdot\left(V_{3} D _{3}\right) \text { over } \nu .\right]

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given two solutions,  V_{1}\left(\text { and } E _{1}=- \nabla V_{1}, D _{1}=\epsilon E _{1}\right) \text { and } V_{2}\left( E _{2}=-\nabla V_{2}, D _{2}=\epsilon E _{2}\right), \text { define } V_{3} \equiv V_{2}-V_{1}\left( E _{3}= E _{2}- E _{1}, D _{3}= D _{2}- D _{1}\right) .

\int_{ \nu } \nabla \cdot\left(V_{3} D _{3}\right) d \tau=\int_{ S } V_{3} D _{3} \cdot d a =0,\left(V_{3}=0 \text { on } S \right), \text { so } \int\left( \nabla V_{3}\right) \cdot D _{3} d \tau+\int V_{3}\left( \nabla \cdot D _{3}\right) d \tau=0 .

But \nabla \cdot D _{3}= \nabla \cdot D _{2}- \nabla \cdot D _{1}=\rho_{f}-\rho_{f}=0, \text { and } \nabla V_{3}= \nabla V_{2}-\nabla V_{1}=- E _{2}+ E _{1}=- E _{3}, \text { so } \int E _{3} \cdot D _{3} d \tau=0 .

But  D _{3}= D _{2}- D _{1}=\epsilon E _{2}-\epsilon E _{1}=\epsilon E _{3}, \text { so } \int \epsilon\left(E_{3}\right)^{2} d \tau=0 . \text { But } \epsilon>0, \text { so } E _{3}=0, \text { so } V_{2}-V_{1}=\text { constant } .

But at surface,  V_{2}=V_{1}, \text { so } V_{2}=V_{1} everywhere.   qed

Related Answered Questions