First note
\begin{aligned}\rho & =\frac{1}{12}(26-10 \sin \theta) \mathrm{\ ft} \\\nu_{E} & =\rho \dot{\phi}_{A B C D}\end{aligned}
Then
\begin{aligned}a_{n} & =\frac{\nu_{E}^{2}}{\rho}=\rho\left(\dot{\phi}_{A B C D}\right)^{2} \\& =\left[\frac{1}{12}(26-10 \sin \theta) \mathrm{ft}\right](14 \mathrm{\ rad} / \mathrm{s})^{2} \\& =\frac{98}{3}(13-5 \sin \theta) \mathrm{ft} / \mathrm{s}^{2}\end{aligned}
Assume that the block is at rest with respect to the plate.
\begin{aligned}& \quad\quad +\swarrow \Sigma F_{x}=m a_{x}: \quad N+W \cos \theta =m \frac{\nu_{E}^{2}}{\rho} \sin \theta \\\text{or}& \quad\quad\quad\quad\quad\quad N =W\left\lgroup-\cos \theta+\frac{\nu_{E}^{2}}{g \rho} \sin \theta\right\rgroup \\& \quad\quad +\searrow \Sigma F_{y}=m a_{y}:-F+W \sin \theta =-m \frac{\nu_{E}^{2}}{\rho} \cos \theta \\\text{or} & \quad\quad\quad\quad\quad\quad F =W\left\lgroup\sin \theta+\frac{\nu_{E}^{2}}{g \rho} \cos \theta\right\rgroup\end{aligned}
(a) We have \quad\theta=80^{\circ}
Then
\begin{aligned}N & =(0.8 \mathrm{\ lb})\left[-\cos 80^{\circ}+\frac{1}{32.2 \mathrm{~ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 80^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \sin 80^{\circ}\right] \\& =6.3159 \mathrm{\ lb} \\F & =(0.8 \mathrm{\ lb})\left[\sin 80^{\circ}+\frac{1}{32.2 \mathrm{~ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 80^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \cos 80^{\circ}\right] \\& =1.92601 \mathrm{\ lb}\end{aligned}
Now \quad F_{\max }=\mu_{s} N=0.35(6.3159 \mathrm{\ lb})=2.2106 \mathrm{\ lb}
The block does not slide in the slot, and
\mathbf{F}=1.926 \mathrm{\ lb} \ ⦩ 80^{\circ}\blacktriangleleft
(b) We have \quad\theta=40^{\circ}
Then
\begin{aligned}N & =(0.8 \mathrm{\ lb})\left[-\cos 40^{\circ}+\frac{1}{32.2 \mathrm{\ ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 40^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \sin 40^{\circ}\right] \\& =4.4924 \mathrm{\ lb} \\F & =(0.8 \mathrm{\ lb})\left[\sin 40^{\circ}+\frac{1}{32.2 \mathrm{\ ft} / \mathrm{s}^{2}} \times \frac{98}{3}\left(13-5 \sin 40^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2} \times \cos 40^{\circ}\right] \\& =6.5984 \mathrm{\ lb}\end{aligned}
Now
\begin{gathered}F_{\max }=\mu_{s} N, \text { from which it follows that } \\F>F_{\max }\end{gathered}
Block E will slide in the slot
and
\begin{aligned}\mathbf{a}_{E} & =\mathbf{a}_{n}+\mathbf{a}_{E / \text { plate }} \\& =\mathbf{a}_{n}+\left(\mathbf{a}_{E / \text { plate }}\right)_{t}+\left(\mathbf{a}_{E / \text { plate }}\right)_{n}\end{aligned}
At t=0, the block is at rest relative to the plate, thus \left(\mathbf{a}_{E / p \text { plate }}\right)_{n}=0 at t = 0, so that \mathbf{a}_{E / \text { plate }} must be directed tangentially to the slot.
\begin{aligned}& +\swarrow \Sigma F_{x}=m a_{x}: \quad N+W \cos 40^{\circ} =m \frac{\nu_{E}^{2}}{\rho} \sin 40^{\circ} \\\text{or } & \quad\quad\quad\quad N =W\left\lgroup-\cos 40^{\circ}+\frac{\nu_{E}^{2}}{g \rho} \sin 40^{\circ}\right\rgroup \text { (as above) } \\& \quad\quad\quad\quad\quad =4.4924 \mathrm{\ lb}\end{aligned}
Sliding:
\begin{aligned}F & =\mu_{k} N \\& =0.25(4.4924 \mathrm{\ lb}) \\& =1.123 \mathrm{\ lb}\end{aligned}
Noting that \mathbf{F} and \mathbf{a}_{E / \text { plane }} must be directed as shown (if their directions are reversed, then \Sigma \mathbf{F}_{x} is \searrowwhile m \mathbf{a}_{x} is \nwarrow), we have
the block slides downward in the slot and
\mathbf{F}=1.123\mathrm{\ lb}\ ⦩40^{\circ}\blacktriangleleft
Alternative solutions.
(a) Assume that the block is at rest with respect to the plate.
\Sigma \mathbf{F}=m \mathbf{a}: \quad \mathbf{W}+\mathbf{R}=m \mathbf{a}_{n}
Then
\begin{aligned}\tan \left(\phi-10^{\circ}\right) & =\frac{W}{m a_{n}}=\frac{W}{\frac{W}{g} \frac{\nu_{E}^{2}}{\rho}}=\frac{g}{\rho\left(\dot{\phi}_{A B C D}\right)^{2}} \\& =\frac{32.2 \mathrm{\ ft} / \mathrm{s}^{2}}{\frac{98}{3}\left(13-5 \sin 80^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2}} & \text{(from above)}\end{aligned}
or \quad\phi-10^{\circ}=6.9588^{\circ}
and \quad\phi=16.9588^{\circ}
Now \quad\tan \phi_{s}=\mu_{s} \quad \mu_{s}=0.35
so that \quad\phi_{s}=19.29^{\circ}
0<\phi<\phi_{s} \RightarrowBlock does not slide and \mathbf{R} is directed as shown.
Now \quad F=R \sin \phi \quad \text { and } \quad R=\frac{W}{\sin \left(\phi-10^{\circ}\right)}
Then
\begin{aligned}F & =(0.8 \mathrm{\ lb}) \frac{\sin 16.9588^{\circ}}{\sin 6.9588^{\circ}} \\& =1.926 \mathrm{\ lb}\end{aligned}
The block does not slide in the slot and
\mathbf{F}=1.926\mathrm{\ lb}\ ⦩80^{\circ}\blacktriangleleft
(b) Assume that the block is at rest with respect to the plate.
\Sigma \mathbf{F}=m \mathbf{a}: \quad \mathbf{W}+\mathbf{R}=m \mathbf{a}_{n}
From Part a (above), it then follows that
\tan \left(\phi-50^{\circ}\right)=\frac{g}{\rho\left(\dot{\phi}_{A B C D}\right)^{2}}=\frac{32.2 \mathrm{\ ft} / \mathrm{s}^{2}}{\frac{98}{3}\left(13-5 \sin 40^{\circ}\right) \mathrm{\ ft} / \mathrm{s}^{2}}
or \quad\phi-50^{\circ}=5.752^{\circ}
and \quad\phi=55.752^{\circ}
Now \quad\phi_{s}=19.29^{\circ}
so that \quad \phi>\phi_{s}
The block will slide in the slot and then
\begin{aligned}& \quad\quad\phi =\phi_{k}, \quad \text { where } \quad \tan \phi_{k}=\mu_{k} \quad \mu_{k}=0.25 \\\text{or} & \quad\quad \phi_{k} =14.0362^{\circ}\end{aligned}
To determine in which direction the block will slide, consider the free-body diagrams for the two possible cases.
Now \quad\Sigma \mathbf{F}=m \mathbf{a}: \quad \mathbf{W}+\mathbf{R}=m \mathbf{a}_{n}+m \mathbf{a}_{E / \text { plate }}
From the diagrams it can be concluded that this equation can be satisfied only if the block is sliding downward. Then
+\swarrow \Sigma F_{x}=m a_{x}: \quad W \cos 40^{\circ}+R \cos \phi_{k}=m \frac{\nu_{E}^{2}}{\rho} \sin 40^{\circ}
Now \quad F=R \sin \phi_{k}
Then \quad W \cos 40^{\circ}+\frac{F}{\tan \phi_{k}}=\frac{W}{g} \frac{\nu_{E}^{2}}{\rho} \sin 40^{\circ}
or
\begin{aligned}F & =\mu_{k} W\left\lgroup-\cos 40^{\circ}+\frac{\nu_{E}^{2}}{g \rho} \sin 40^{\circ}\right\rgroup \\& =1.123 \mathrm{\ lb} \quad \text { (see the first solution) }\end{aligned}
The block slides downward in the slot and
\mathbf{F}=1.123\mathrm{\ lb}\ ⦩40^{\circ}\blacktriangleleft