Question 9.69: An extruded beam has the cross section shown in Figure P9.69...

An extruded beam has the cross section shown in Figure P9.69. For this shape, use dimensions of b = 50 mm, h = 40 mm, and t = 3 mm. What is the distance e to the shear center O?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Moment of inertia about the neutral axis: Recognizing that the wall thickness is thin, the moment of inertia for the stiffened channel shape can be calculated as:

\begin{aligned}I_{N A} &=2 \frac{(3  mm )(40  mm )^{3}}{12}+2\left[(50  mm )(3  mm )\left(\frac{40  mm }{2}\right)^{2}\right] \\&=32,000  mm ^{4}+120,000  mm ^{4}=152,000  mm ^{4}\end{aligned}

Shear Flow in Upper Stiffener: Derive an expression for Q for the upper stiffener as a function of a temporary variable v which originates at the tip of the upper stiffener.

Q_{s}=\bar{y}^{\prime} A^{\prime}=\left(\frac{v}{2}\right)[(3  mm ) v]=(1.5  mm ) v^{2}

Express the shear flow q in the upper stiffener using Q_{s}.

q=\frac{V Q}{I}=\frac{V}{152,000  mm ^{4}}\left[(1.5  mm ) v^{2}\right]

Integrate with respect to the temporary variable v to determine the resultant force in the upper stiffener.

\begin{aligned}F_{s} &=\int_{0}^{20  mm } q d v \\&=\int_{0}^{20  mm } \frac{V}{152,000  mm ^{4}}\left[(1.5  mm ) v^{2}\right] d v \\&=\frac{V}{152,000  mm ^{4}}\left[\frac{1.5  mm }{3} v^{3}\right]_{0}^{20  mm }=\frac{V}{38}=0.0263158 V\end{aligned}

 

Shear Flow in Upper Flange: Derive an expression for Q for the upper flange as a function of a temporary variable u which originates at the right edge of the upper flange.

\begin{aligned}Q_{f} &=\bar{y}^{\prime} A^{\prime}=(10  mm )(3  mm )(20  mm )+(20  mm )[(3  mm ) u] \\&=600  mm ^{3}+\left(60  mm ^{2}\right) u\end{aligned}

Express the shear flow q in the upper flange using Q_{f}.

 

q=\frac{V Q}{I}=\frac{V}{152,000  mm ^{4}}\left[600  mm ^{3}+\left(60  mm ^{2}\right) u\right]

Integrate with respect to the temporary variable u to determine the resultant force in the upper flange.

\begin{aligned}F_{f} &=\int_{0}^{50  mm } q d u \\&=\int_{0}^{50  mm } \frac{V}{152,000  mm ^{4}}\left[600  mm ^{3}+\left(60  mm ^{2}\right) u\right] d u \\&=\frac{V}{152,000  mm ^{4}}\left[\left(600  mm ^{3}\right) u+\left(30  mm ^{2}\right) u^{2}\right]_{0}^{50  mm } \\&=\frac{V}{152,000  mm ^{4}}\left[30,000  mm ^{4}+75,000  mm ^{4}\right]=0.6907895 V\end{aligned}

 

Shear center: To determine the shear center, sum moments about the lower left corner of the channel web.

\begin{aligned}V e &=F_{f}(40  mm )+2 F_{s}(50  mm ) \\e &=\frac{F_{f}(40  mm )+2 F_{s}(50  mm )}{V} \\&=\frac{(0.6907895 V )(40  mm )+2(0.0263158 V )(50  mm )}{V} \\&=27.6315800  mm +2.6315800  mm =30.3  mm\end{aligned}

 

 

 

 

 

Related Answered Questions