Question 9.70: An extruded beam has the cross section shown in Figure P9.70...

An extruded beam has the cross section shown in Figure P9.70. The dimensions of this shape are b = 45 mm, h = 75 mm, and t = 4 mm. Assume that the thickness t is constant for all portions of the cross section. What is the distance e from the left-most element to the shear center O?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Moment of inertia about the neutral axis: Recognizing that the wall thickness is thin, the moment of inertia for the shape can be calculated as:

\begin{aligned}I_{N A} &=\frac{(4  mm )(150  mm )^{3}}{12}+2\left[(45  mm )(4  mm )\left(\frac{75  mm }{2}\right)^{2}\right]+2\left[(45  mm )(4  mm )\left(\frac{150  mm }{2}\right)^{2}\right] \\&=1,125,000  mm ^{4}+506,250  mm ^{4}+2,025,000  mm ^{4}=3,656,250  mm ^{4}\end{aligned}

Shear Flow in Upper Flange: Derive an expression for Q for the upper flange as a function of a temporary variable s which originates at the free end of the flange.

Q_{\text {upper }}=\bar{y}^{\prime} A^{\prime}=(75  mm )[(4  mm ) s]=\left(300  mm ^{2}\right) s

Express the shear flow q in the upper flange using Q_{\text {upper. }}

q_{ upper }=\frac{V Q_{\text {upper }}}{I}=\left(\frac{V\left(300  mm ^{2}\right)}{3,656,250  mm ^{4}}\right) s

 

 

Integrate with respect to the temporary variable s to determine the resultant force in the upper stiffener.

\begin{aligned}F_{\text {upper }} &=\int_{0}^{45  mm } q_{ upper } d s \\&=\int_{0}^{45  mm }\left(\frac{V\left(300  mm ^{2}\right)}{3,656,250  mm ^{4}}\right) s d s \\&=\frac{V\left(300  mm ^{2}\right)}{3,656,250  mm ^{4}}\left[\frac{1}{2} s^{2}\right]_{0}^{45  mm }=0.0830769 V\end{aligned}

 

Shear Flow in Middle Flange: Derive an expression for Q for the middle flange as a function of a temporary variable s which originates at the free end of the flange.

Q_{\text {middle }}=\bar{y}^{\prime} A^{\prime}=(37.5  mm )[(4  mm ) s]=\left(150  mm ^{2}\right) s

Express the shear flow q in the middle flange using Q_{\text {middle }}.

q_{\text {middle }}=\frac{V Q_{\text {middle }}}{I}=\left(\frac{V\left(150  mm ^{2}\right)}{3,656,250  mm ^{4}}\right) s

 

Integrate with respect to the temporary variable s to determine the resultant force in the middle flange.

\begin{aligned}F_{\text {middle }} &=\int_{0}^{45  mm } q_{\text {midde }} d s \\&=\int_{0}^{45  mm }\left(\frac{V\left(150  mm ^{2}\right)}{3,656,250  mm ^{4}}\right) s d s \\&=\frac{V\left(150  mm ^{2}\right)}{3,656,250  mm ^{4}}\left[\frac{1}{2} s^{2}\right]_{0}^{45  mm }=0.0415385 V\end{aligned}

 

Shear center: To determine the shear center, sum moments about a central point in the middle of the web at the neutral axis location.

\begin{aligned}V e &=2 F_{\text {upper }}(75  mm )+2 F_{\text {middle }}(37.5  mm ) \\e &=\frac{2 F_{\text {upper }}(75  mm )+2 F_{\text {middle }}(37.5  mm )}{V} \\&=\frac{2(0.0830769 V )(75  mm )+2(0.0415385 V )(37.5  mm )}{V} \\&=12.4615350  mm +3.1153846  mm =15.58  mm\end{aligned}

 

Related Answered Questions